函數(shù)y=x3與x軸,直線x=1圍成的封閉圖形的面積為( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2
考點:定積分
專題:計算題
分析:由定積分的意義可知所求面積S=
1
0
x3dx,計算即可.
解答: 解:由定積分的意義可知所求面積S=
1
0
x3dx
=
1
4
x4
|
1
0
=
1
4
(14-04)=
1
4

故選:B
點評:本題考查定積分,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)在區(qū)間(0,+∞)上是減函數(shù),那么f(a2-a+1)與f(
3
4
)的大小關系是(  )
A、f(a2-a+1)>f(
3
4
B、f(a2-a+1)≤f(
3
4
C、f(a2-a+1)≥f(
3
4
D、f(a2-a+1)<f(
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
,
c
均為單位向量,且
a
b
,向量
b
,
a
c
的夾角分別為
π
4
,
4
,則|
a
+
b
+
c
|=( 。
A、
3
B、2
C、1+
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F(-c,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1的左焦點,離心率為e,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=3cx上,則e2=(  )
A、
13
-1
3
B、
5
C、
1+
5
2
D、
13
+1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin47°cos43°+cos47°sin43°等于( 。
A、0
B、1
C、-1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果θ=3rad,那么角θ的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知
AB
=
1
3
AP
,則( 。
A、
OP
=2
OA
-3
OB
B、
OP
=2
OA
+3
OB
C、
OP
=-2
OA
+3
OB
D、
OP
=3
OA
-2
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(x,y)在直線x+y-2=0上,則P到原點距離的最小值是(  )
A、2
2
B、
2
C、1
D、2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題:向量
OA
OB
不共線,設
OP 
=a
OA
+b
OB
,a,b均為實數(shù),且滿足a+b=1,則A,B,P三點共線.
(1)將此命題類比到空間,闡述一個相似的正確命題:向量
OA
,
OB
,
OC
不共面.若點P滿足向量關系:
 
,則
 

(2)證明(1)中的命題.

查看答案和解析>>

同步練習冊答案