【題目】已知定義在上的函數(shù)的圖像經(jīng)過點,且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )
A. B. C. D.
【答案】D
【解析】
由題意可得f(3)=0,f(﹣x+2)=f(x+2),即函數(shù)f(x)關(guān)于直線x=2對稱,f(x)在(﹣∞,2]單調(diào)遞增,且f(1)=f(3)=0,可得1<x+1<3,解不等式即可得到所求解集.
定義在R上的函數(shù)f(x)的圖象經(jīng)過點M(3,0),
可得f(3)=0,
f(x)在區(qū)間[2,+∞)單調(diào)遞減,又知函數(shù)f(x+2)為偶函數(shù),
可得f(﹣x+2)=f(x+2),即函數(shù)f(x)關(guān)于直線x=2對稱,
f(x)在(﹣∞,2]單調(diào)遞增,
且f(1)=f(3)=0,
由f(x+1)>0,
可得1<x+1<3,
解得0<x<2,
即解集為(0,2),
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函f(x)=x2﹣x+alnx.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證f(x2)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】能被3整除,且構(gòu)成每個數(shù)的數(shù)碼只限于1、2、3(1、2、3可以不全部用到)的所有小于200000的不同自然數(shù)個數(shù)是_____________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.
(1)求證:SB⊥平面SAD;
(2)求二面角D﹣SC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別是正方體的棱上兩點,且,給出下列四個命題:①三棱錐的體積為定值;②異面直線與所成的角為;③平面;④直線與平面所成的角為.其中正確的命題為( )
A. ①② B. ②③ C. ①②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x2+bx﹣alnx.
(1)當(dāng)a=5,b=﹣1時,求f(x)的單調(diào)區(qū)間;
(2)若對任意b∈[﹣3,﹣2],都存在x∈(1,e2)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組織,現(xiàn)把該組織的成員按年齡分成組第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示,已知第組有人.
(1)求該組織的人數(shù);
(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動,應(yīng)從第組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組至少有名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時,.其中且.
(1)求的解析式;
(2)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所學(xué)校高三年級分別有600人,500人,為了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
(1)計算x,y的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com