【題目】分別是正方體的棱上兩點,且,給出下列四個命題:①三棱錐的體積為定值;②異面直線所成的角為;③平面;④直線與平面所成的角為.其中正確的命題為( )

A. ①② B. ②③ C. ①②④ D. ①④

【答案】A

【解析】

對于①,由題意及三棱錐的體積的算法中可以進行頂點可以輪換性求解體積即可判斷正誤;對于②,由題意及圖形利用異面直線所成角的概念及求異面直線間的方法及可求解;對于③,由可知,直線不垂直,所以不成立.可攀登者我可判斷正誤.

由題意得,如圖所示,

①中,三棱錐的體積的為,所以體積為定值;②中,在正方體中,,所以異面直線所成的角就是直線所成的角,即,所以這正確的;

③中,由②可知,直線不垂直,所以不成立,所以是錯誤的;

④中,根據(jù)斜線與平面所成的角,可知與平面所成的角,即為,所以不正確.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,對角線AC與BD交于點O,M為OC中點.

(1)求證:BD⊥PM
(2)若二面角O﹣PM﹣D的正切值為2 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】調(diào)查某校 100 名學生的數(shù)學成績情況,得下表:

一般

良好

優(yōu)秀

男生(人)

18

女生(人)

10

17

已知從這批學生中隨機抽取1名學生,抽到成績一般的男生的概率為0.15.

(1)求的值;

(2)若用分層抽樣的方法,從這批學生中隨機抽取20名,問應在優(yōu)秀學生中抽多少名?

(3)已知,優(yōu)秀學生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)的導函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是(
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關于直線x= 對稱
D.y=f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結算,每輛自行車的日租金x元只取整數(shù),用元表示出租自行車的日純收入日純收入一日出租自行車的總收入管理費用

求函數(shù)的解析式及其定義域;

當租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像經(jīng)過點,且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設直線l與曲線C相交于A,B兩點,求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為 ,此時四面體ABCD的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案