分析 (1)由f(-1)=0可求得b=a+c,利用△=(a-c)2分析判斷即可;
(2)令g(x)=f(x)-$\frac{1}{2}$[f(x1)+f(x2)],可證得g(x1)g(x2)<0,由零點(diǎn)存在定理可知存在x0∈(x1,x2),使f(x0)=$\frac{1}{2}$[f(x1)+f(x2)]成立.
解答 (1)解:∵f(-1)=0,
∴a-b+c=0,則b=a+c,
∵△=b2-4ac=(a-c)2,
∴當(dāng)a=c時(shí),△=0,此函數(shù)f(x)有一個(gè)零點(diǎn);
當(dāng)a≠c時(shí),△>0.函數(shù)f(x)有兩個(gè)零點(diǎn).
(2)證明:令g(x)=f(x)-$\frac{1}{2}$[f(x1)+f(x2)],則
g(x1)=f(x1)-$\frac{1}{2}$[f(x1)+f(x2)]
=$\frac{1}{2}$[f(x1)-f(x2)]g(x2)
=f(x2)-$\frac{1}{2}$[f(x1)+f(x2)]
=$\frac{1}{2}${f(x2)-f(x1)},
∵f(x1)≠f(x2)
∴g(x1)g(x2)<0,所以g(x)=0在(x1,x2)內(nèi)必有一個(gè)實(shí)根,
即存在x0∈(x1,x2)使f(x0)=$\frac{1}{2}$[f(x1)+f(x2)]成立.
點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),考查函數(shù)零點(diǎn)的判定定理,考查化歸思想與構(gòu)造函數(shù)的思想的綜合應(yīng)用,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | |||||
2x | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
f(x)=2sin2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com