當(dāng)0<x<
π
2
時(shí),函數(shù)f(x)=
1+cos2x+8sin2x
sin2x
的最小值為
 
分析:先利用二倍角公式和同角三角函數(shù)的基本關(guān)系對(duì)函數(shù)解析式化簡(jiǎn)整理,然后利用基本不等式求得函數(shù)的最小值.
解答:解:f(x)=
1+cos2x+8sin2x
sin2x
=
8sin 2x+2cos2x
2sinxcosx
=
4sinx
cosx
+
cosx
sinx
≥4
當(dāng)且僅當(dāng)4sin2x=cos2x時(shí)等號(hào)成立.
故答案為;4
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)的基本關(guān)系的應(yīng)用,二倍角化簡(jiǎn)求值,基本不等式的求最值.考查了基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R+上的遞減函數(shù)f(x)同時(shí)滿足:(1)當(dāng)且僅當(dāng)x∈M?R+時(shí),函數(shù)值f(x)的集合為[0,2];(2)f(
1
2
)=1;(3)對(duì)M中的任意x1、x2都有f(x1•x2)=f(x1)+f(x2);(4)y=f(x)在M上的反函數(shù)為y=f-1(x).
(1)求證:
1
4
∈M,但
1
8
∉M;
(2)求證:f-1(x1)•f-1(x2)=f-1(x1+x2);
(3)解不等式:f-1(x2-x)•f-1(x-1)≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時(shí),函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當(dāng)a=-2,b=4時(shí),求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=lnx-ax2+(2-a)x.
①討論f(x)的單調(diào)性;
②設(shè)a>0,證明:當(dāng)0<x<
1
a
時(shí),f(
1
a
+x)>f(
1
a
-x)
;
③函數(shù)y=f(x)的圖象與x軸相交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)1<x<2時(shí),是否存在實(shí)數(shù)a使y=x2-3(a+1)x+2(3a+1)的函數(shù)值小于0恒成立,若存在,則a的范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如下圖所示,下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函y=f(x)-a數(shù)有4個(gè)零點(diǎn);
其中真命題的個(gè)數(shù)是

[     ]

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案