【題目】已知函數(shù).

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請說明理由.

【答案】(1),無極小值;(2).

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算,得到關(guān)于的方程組,解出即可求得的表達(dá)式,從而求出函數(shù)的單調(diào)區(qū)間,進(jìn)而求出函數(shù)的極值即可;

2)求出的導(dǎo)數(shù),通過討論的取值范圍,判斷函數(shù)的單調(diào)性,從而確定的范圍即可。

試題解析:(1)依題意, ,

又由切線方程可知, ,斜率,

所以,解得,所以,

所以,

當(dāng)時, 的變化如下:

+

極大值

所以,無極小值.

2)依題意, ,所以

當(dāng)時, 上恒成立,故無極值;

當(dāng)時,令,得,則,且兩根之積

不妨設(shè),則,即求使的實(shí)數(shù)的取值范圍.

由方程組消去參數(shù)后,得,

構(gòu)造函數(shù),則,所以上單調(diào)遞增,

,所以解得,即,解得.

①②可得, 的范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地

區(qū)調(diào)查了500位老年人,結(jié)果如下:

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人需要志愿者提供幫助與性別有

關(guān)?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(1)討論函數(shù)的極值;

(2)當(dāng)時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有 個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,

約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點(diǎn)數(shù)為 的人去參加

甲游戲,擲出點(diǎn)數(shù)大于 的人去參加乙游戲.

1)求這 個人中恰有 個人去參加甲游戲的概率;

2)求這 個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).

(1)若g(x)=m有實(shí)根,求m的取值范圍;

(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-2ax+2+b(a≠0)在區(qū)間[2,3]上有最大值5,最小值2.

(1)求a,b的值;

(2)若b<1,g(x)=f(x)-2mx在[2,4]上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,證明函數(shù)是單調(diào)函數(shù);

(2)當(dāng)時,函數(shù)在區(qū)間上的最小值是,求的值;

(3)設(shè),是函數(shù)圖象上任意不同的兩點(diǎn),記線段的中點(diǎn)的橫坐標(biāo)是,證明直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含個小正方形.

(1)求出

(2)利用合情推理的“歸納推理思想”歸納出的關(guān)系式,

(3)根據(jù)你得到的關(guān)系式求的表達(dá)式

查看答案和解析>>

同步練習(xí)冊答案