3
sin(
3
-
20π
3
)
tan
11π
3
-cos
13π
4
•tan(-
35π
4
π).
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:運(yùn)用誘導(dǎo)公式化簡為特殊角的三角函數(shù)值從而求值.
解答: 解:原式=
3
sin
3
tan
3
+cos
π
4
tan
π
4

=-
3
•sin
π
3
•(
1
-tan
π
3
)+cos
π
4
tan
π
4

=-
3
×
3
2
×(-
3
3
)+
2
2
×1

=
3
2
+
2
2
=
3
+
2
2
點(diǎn)評:本題主要考察運(yùn)用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x(1-x),
(1)求函數(shù)的解析式,并畫出函數(shù)圖象;
(2)寫出函數(shù)的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x|x2-3x<0},N={x|y=
x-2
},則M∩(∁RN)=( 。
A、(0,1)
B、(0,2)
C、(0,3)
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x<
1
3
,則
1-6x+9x2
等于( 。
A、3x-1
B、1-3x
C、(1-3x)2
D、非以上答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<b<a<1,則下列不等式成立的是(  )
A、ab<b2<1
B、log 
1
2
1
b
>log 
1
2
1
a
C、2b<2a<2
D、a2<ab<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中,值為正數(shù)的是( 。
A、cos2-sin2
B、tan3•cos2
C、sin2•tan2
D、cos2•sin2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,an=
an-1
1+an-1

(1)求a2、a3、a4、a5;猜想數(shù)列的通項(xiàng)公式an
(2)設(shè)bn={anan+1},求數(shù)列{bn}的前n項(xiàng)和Sn
18或者換成數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
3
(an-1).
(1)證明:數(shù)列{an}是等比數(shù)列;  (2)求an及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)g(x)=
3-|x|
的定義域?yàn)榧螧.
(1)求A∩B;
(2)若C={x|(x+2-p)(x+2+p)<0,p>0},且C⊆(A∩B)求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)n和為Sn,滿足Sn=2an-2n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若數(shù)列{bn}滿足bn=
1
an+2
,Tn為數(shù)列{bn}的前項(xiàng)n和,求
lim
n→∞
Tn的值;
(3)數(shù)列{an}中是否存在三項(xiàng)ar,as,at(r<s<t)成等差數(shù)列?若存在.請求出一組適合條件的項(xiàng);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案