6.(1)已知數(shù)列{an}中,a1=2,前n項之和An滿足An=$\frac{1}{4}$(an2+2an),且an>0,求An
(2)若數(shù)列{bn}的前n項之和為Bn,且通項bn滿足log2an-log2bn=n+1+log2n,求Bn

分析 (1)利用等差數(shù)列的通項公式及其前n項和公式即可得出;
(2)由log2an-log2bn=n+1+log2n,利用對數(shù)的運算性質(zhì)可得:$\frac{{a}_{n}}{_{n}}$=n•2n+1,再利用(1)可得:bn=$\frac{1}{{2}^{n}}$,利用等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵An=$\frac{1}{4}$(an2+2an),
∴當(dāng)n≥2時,${A}_{n-1}=\frac{1}{4}({a}_{n-1}^{2}+2{a}_{n-1})$,
∴an=$\frac{1}{4}$(an2+2an)-$\frac{1}{4}({a}_{n-1}^{2}+2{a}_{n-1})$,
化為(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,首項為2,公差為2,
∴An=2n+$\frac{n(n-1)}{2}×2$=n2+n.
(2)∵log2an-log2bn=n+1+log2n,
∴$\frac{{a}_{n}}{_{n}}$=n•2n+1
由(1)可得:an=2+2(n-1)=2n,
∴$\frac{2n}{_{n}}=n•{2}^{n+1}$,
∴bn=$\frac{1}{{2}^{n}}$,
∴數(shù)列{bn}是等比數(shù)列,首項為$\frac{1}{2}$,公比為$\frac{1}{2}$.
其前n項之和為Bn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(1)證明EM⊥BF;
(2)求三棱錐E-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)f(x)=xsinx+cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.橢圓C1和拋物線C2的焦點均在x軸上,C1的中心和C2的頂點都在坐標(biāo)原點O,點F是橢圓C1的右焦點,點M位于x軸上方且在拋物線C2的準(zhǔn)線上,已知曲線C1:C2上各有兩點,其坐標(biāo)關(guān)系如下表:
x-4-1-$\frac{1}{2}$0
y-8$\frac{3}{2}$2$\sqrt{2}$$\sqrt{3}$
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以線段OM為直徑且被直線5x+12y-9=0截得的弦長為4的圓C的方程;
(Ⅲ)過點F斜率為k(k≠0)的直線l與C1交于P、Q兩點,與圓C交于A、B兩點.問:是否存在直線l,使得線段PQ與線段AB有相同的中點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若cos2α=a,求sin4α-cos4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}中,a2=2,a5=$\frac{1}{4}$,則a1+a2+a3+…+an的取值范圍為{8(1-$\frac{1}{{2}^{n}}$)|n∈N*}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求證:CD⊥平面CPAC;
(2)如果N是棱AB上一點,且直線CN與平面MAB所E,F(xiàn)成角的正弦值為$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+2alnx.求函數(shù)f(x)的單調(diào)區(qū)間;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB=5,AC=4,BC=3,AA1=4,點D在AB上.
(1)若D是AB中點,求證:AC1∥平面B1CD;
(2)當(dāng)$\frac{BD}{AB}$=$\frac{1}{5}$時,求三棱錐B-CDB1的體積.

查看答案和解析>>

同步練習(xí)冊答案