分析 根據(jù)求導(dǎo)公式和題意求出f′(x),結(jié)合定義域和余弦函數(shù)的性質(zhì)求出f′(x)>0是x的范圍,奇求出函數(shù)f(x)的單調(diào)遞增區(qū)間.然后求出單調(diào)減區(qū)間,求解函數(shù)的最值.
解答 解:由題意得,f′(x)=sinx+xcosx-sinx=xcosx,
根據(jù)余弦函數(shù)的性質(zhì)得,
當(dāng)x∈[0,$\frac{π}{2}$]時,f′(x)>0,
所以f(x)的單調(diào)遞增區(qū)間是[0,$\frac{π}{2}$],單調(diào)減區(qū)間為:[$-\frac{π}{2},0$]
f($-\frac{π}{2}$)=$-\frac{π}{2}$sin($-\frac{π}{2}$)+cos($-\frac{π}{2}$)=$\frac{π}{2}$,
f(0)=0×sin0+cos0=1,
f($\frac{π}{2}$)=$\frac{π}{2}$sin$\frac{π}{2}$+cos$\frac{π}{2}$=$\frac{π}{2}$,
函數(shù)的最大值為$\frac{π}{2}$,最小值為1.
點(diǎn)評 本題考查余弦函數(shù)的性質(zhì),以及導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系,利用函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com