曲線
x=2+cosθ
y=-1+sinθ
(θ為參數(shù))的對稱中心(  )
A、在直線y=2x上
B、在直線y=-2x上
C、在直線y=x-3上
D、在直線y=x+3上
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:利用基本關系式的平方關系消去參數(shù)θ,得到一般方程,可知曲線為圓,則圓心為其對稱中心,只要找出過圓心的直線即可.
解答: 解:曲線
x=2+cosθ
y=-1+sinθ
(θ為參數(shù))消去θ得(x-2)2+(y+1)2=1,
此曲線是以(2,-1)為圓心,1為半徑的圓,所以它的對稱中心為圓心(2,-1),所以在直線y=x-3上;
故選C.
點評:本題考查了圓的參數(shù)方程化為普通方程的方法以及圓的對稱中心是圓心,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設M是橢圓
x2
25
+
y2
16
=1
上的一點,F(xiàn)1,F(xiàn)2為焦點,∠F1MF2=
π
6
,則△MF1F2的面積為( 。
A、
16
3
3
B、16(2+
3
)
C、16(2-
3
)
D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),且當x∈(0,+∞)時f(x)=x(1+
3x
),則當x∈(-∞,0)時,f(x)等于( 。
A、-x(1+
3x
B、x(1+
3x
C、-x(1-
3x
D、x(1-
3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為sn,a1=1且sn=sn-1+an-1+
1
2
,數(shù)列{bn}滿足b1=-30.
(1)求{an}的通項公式;
(2)若數(shù)列{bn-an}是公比為
1
2
的等比數(shù)列,求{bn}前n項和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

扣人心弦的巴西世界足球杯已落下了帷幕,為了解市民對該屆世界杯的關注情況,某市足球協(xié)會針對該市市民組織了一次隨機調(diào)查,所抽取的樣本容量為120,調(diào)查結果如下:
收視情況看直播看轉播不看
人數(shù)(單位:人)604020
(1)若從這120人中按照分層抽樣的方法隨機抽取6人進行座談,再從這6人中隨機抽取3人頒發(fā)幸運禮品,求這3人中至少有1人為“看直播”的概率;
(2)現(xiàn)從(1)所抽取的6人的問卷中抽3份,記“看直播”的問卷分數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的不等式|tx-2|-|tx-t|≤1,其中t是實參數(shù).
(1)當t=1時,解上面的不等式.
(2)若?x∈R,上面的不等式均成立,求實數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且(Sn-1)2=anSn
(Ⅰ)求a1;
(Ⅱ)求證:數(shù)列{
1
Sn-1
}為等差數(shù)列;
(Ⅲ)是否存在正整數(shù)m,k,使
1
akSk
=
1
am
+19成立?若存在,求出m,k;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2-3x+a=0在區(qū)間(2,3)內(nèi)有一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案