已知函數f(x)=2ex-ax-2(a∈R)
(1)討論函數的單調性;
(2)若f(x)≥0恒成立,證明:x1<x2時,
(1)當x∈(-∞,ln)時,f(x)單調遞減;當x∈(ln,+∞)時,f(x)單調遞增.(2)見解析
【解析】試題分析:(1)利用導數值的正負,通過對a范圍的討論,找出相應單調區(qū)間;(2)先確定a的范圍,然后利用(1)的結論找出f(x2)-f(x1)與x2-x1的關系式,
試題解析:(Ⅰ)f?(x)=2ex-a.
若a≤0,則f?(x)>0,f(x)在(-∞,+∞)上單調遞增;
若a>0,則
當x∈(-∞,ln)時,f?(x)<0,f(x)單調遞減;
當x∈(ln,+∞)時,f?(x)>0,f(x)單調遞增. 4分
(Ⅱ)證明:由(Ⅰ)知若a≤0,f(x)在(-∞,+∞)上單調遞增,又f(0)=0,故f(x)≥0不恒成立.
若a>0,則由f(x)≥0=f(0)知0應為極小值點,即ln=0,
所以a=2,且ex-1≥x,當且僅當x=0時,取“=”. 7分
當x1<x2時,f(x2)-f(x1)=2(ex2-ex1)-2(x2-x1)
=2ex1(ex2-x1-1)-2(x2-x1)
≥2ex1(x2-x1)-2(x2-x1)
=2(ex1-1) (x2-x1),
所以>2(ex1-1). 12分
注:若有其他解法,請參照評分標準酌情給分.
考點:利用導數討論函數的單調性,分類與整合,不等式的證明
科目:高中數學 來源:2015屆河南省高三上學期第一次月考文科數學試卷(解析版) 題型:解答題
已知函數,在點處的切線方程為.
(I)求函數的解析式;
(II)若對于區(qū)間上任意兩個自變量的值,都有,求實數的最小值;
(III)若過點,可作曲線的三條切線,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2015屆河北省高二下學期第一次月考文科數學試卷(解析版) 題型:選擇題
已知函數則是成立的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源:2015屆河北省唐山市高三年級摸底考試理科數學試卷(解析版) 題型:填空題
在△ABC中,,點D在邊BC上,,,,則AC+BC=_________________.
查看答案和解析>>
科目:高中數學 來源:2015屆河北省唐山市高三年級摸底考試文科數學試卷(解析版) 題型:填空題
在△ABC中,,點D在邊BC上,,,,則AC+BC=_________________.
查看答案和解析>>
科目:高中數學 來源:2015屆河北省高二下學期期中考試文科數學試卷(解析版) 題型:解答題
(本小題滿分12分) 直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程為,直線方程為(t為參數),直線與C的公共點為T.
(1)求點T的極坐標;
(2)過點T作直線,被曲線C截得的線段長為2,求直線的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com