已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0,x∈R)的最小正周期為
π
2

(1)求f(
3
)的值,并寫(xiě)出函數(shù)f(x)的圖象的對(duì)稱中心的坐標(biāo);
(2)當(dāng)x∈[
π
3
,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間.
f(x)=
3
sinωxcosωx-cos2ωx+
1
2

=
3
2
sin2ωx-
1
2
 cos2ωx
=sin(2ωx-
π
6
),
(1)∵函數(shù)的最小正周期為
π
2
,ω>0
∴ω=2,
即f(x)=sin(4x-
π
6
),
∴f(
3
)=sin(
3
-
π
6
)=sin
π
2
=1,
令4x-
π
6
=kπ,
解得x=
4
+
π
24
,
所以函數(shù)的對(duì)稱中心坐標(biāo)為(
4
+
π
24
,0)(k∈Z)
(2)當(dāng)x∈[
π
3
π
2
]時(shí),4x-
π
6
∈[
6
,
11π
6
]
∵當(dāng)4x-
π
6
∈[
6
2
]時(shí),函數(shù)f(x)為減函數(shù)
∴當(dāng)x∈[
π
3
π
2
]時(shí),函數(shù)f(x)的單調(diào)遞減區(qū)間為[
π
3
,
12
].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3•2x-1,則當(dāng)x∈N時(shí),數(shù)列{f(n+1)-f(n)}( 。
A、是等比數(shù)列B、是等差數(shù)列C、從第2項(xiàng)起是等比數(shù)列D、是常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x|x<a}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]•g(x)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案