19.已知:θ為第一象限角,$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{sinθ+3cosθ}{sinθ-cosθ}$的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=1,求sinθ+cosθ的值.

分析 (1)利用向量共線定理可得$\frac{1}{2}$sinθ=cosθ,解得tanθ.再利用弦化切即可得解.
(2)利用平面向量的坐標(biāo)運(yùn)算可求2sinθcosθ=$\frac{1}{4}$,進(jìn)而計(jì)算得解sinθ+cosθ的值.

解答 解:(1)∵$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),$\overrightarrow{a}$∥$\overrightarrow$,
∴-$\frac{1}{2}$sin(θ-π)=sin($\frac{π}{2}$-θ),可得:$\frac{1}{2}$sinθ=cosθ
又∵θ為第一象限角,可得:tanθ=2,
∴$\frac{sinθ+3cosθ}{sinθ-cosθ}$=$\frac{tanθ+3}{tanθ-1}$=5.
(2)∵|$\overrightarrow{a}$+$\overrightarrow$|=1,$\overrightarrow{a}$+$\overrightarrow$=(cosθ-sinθ,$\frac{1}{2}$),
∴(cosθ-sinθ)2+($\frac{1}{2}$)2=1,解得:2sinθcosθ=$\frac{1}{4}$,
∴sinθ+cosθ=$\sqrt{1+2sinθcosθ}$=$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題主要考查了平面向量共線定理,平面向量的坐標(biāo)運(yùn)算,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(sinx)=cos3x,則f(cos10°)的值為( 。
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-4x-5<0},B={x|3<2x-1<7},設(shè)全集U=R,
求(1)A∪B.(2)A∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用錘子以均勻的力敲擊鐵釘入木板,隨著鐵釘?shù)纳钊耄F釘所受的阻力會(huì)越來越大,使得每次釘入木板的釘子長(zhǎng)度后一次為前一次的$\frac{1}{n}$(n∈N*).已知一個(gè)鐵釘受擊3次后全部進(jìn)入木板,且第一次受擊后進(jìn)入木板部分的鐵釘長(zhǎng)度是釘長(zhǎng)的$\frac{3}{5}$,請(qǐng)從這個(gè)實(shí)事中提煉出一個(gè)不等式組是$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.將含有3n個(gè)正整數(shù)的集合M分成元素個(gè)數(shù)相等且兩兩沒有公共元素的三個(gè)集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,求x的值;
(2)對(duì)于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,求元素乘積最小的集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知不等式|x+3|-2x-1<0的解集為(x0,+∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x-m|+|x+$\frac{1}{m}$|-x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線上存在點(diǎn)P,使得P到兩個(gè)焦點(diǎn)的距離之比為2:1,則稱此雙曲線存在“L點(diǎn)”,下列雙曲線中存在“L點(diǎn)”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知O為原點(diǎn),過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的點(diǎn)P作兩條漸近線的平行線,且與兩漸近線的交點(diǎn)分別為A,B,平行四邊形OBPA的面積為2,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線$\sqrt{3}$x-y+3=0的傾斜角是( 。
A.30°B.45°C.60°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案