【題目】已知函數(shù)

1)設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間及極大值;

2)設(shè)函數(shù)有兩個(gè)極值點(diǎn)

①求實(shí)數(shù)的取值范圍;

②求證:

【答案】1)單調(diào)減區(qū)間為.(2)①.②見(jiàn)解析

【解析】

1)求出函數(shù),再求出其導(dǎo)函數(shù),令,解出,根據(jù)單調(diào)性和極值求法即可求解.

2)①函數(shù)有兩個(gè)極值點(diǎn),即方程有兩個(gè)不等實(shí)根.分離參數(shù),轉(zhuǎn)化成圖像有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,即可得到實(shí)數(shù)的取值范圍;②不妨設(shè),由①知,且有,可得,將可化.再構(gòu)造函數(shù),利用導(dǎo)數(shù)證出,即可證明.

1,

當(dāng)時(shí),

,解得,

當(dāng)時(shí),,為單調(diào)減函數(shù);

當(dāng)時(shí),,為單調(diào)增函數(shù);

當(dāng)時(shí),,為單調(diào)減函數(shù),

函數(shù)的單調(diào)減區(qū)間為,,

2)①函數(shù)有兩個(gè)極值點(diǎn)

方程有兩個(gè)不等實(shí)根.

,顯然時(shí)方程無(wú)根,

設(shè),則

,得

當(dāng)時(shí),,為單調(diào)遞增函數(shù);

當(dāng)時(shí),,為單調(diào)遞減函數(shù).

且當(dāng)時(shí),;當(dāng)時(shí),,

實(shí)數(shù)的取值范圍是

②證明:不妨設(shè),由①知,且有

可化為

即證,

即證,即

設(shè),即證當(dāng)時(shí)成立.

設(shè),

,

上為增函數(shù).

,即成立.

成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線焦點(diǎn)且傾斜角的直線與拋物線交于點(diǎn)的面積為

(I)求拋物線的方程;

(II)設(shè)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)作拋物線的切線,切點(diǎn)分別為直線與直線軸的交點(diǎn)分別為點(diǎn)是以為圓心為半徑的圓上任意兩點(diǎn),求最大時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f x=ax﹣exa∈R),gx=

)求函數(shù)f x)的單調(diào)區(qū)間;

x00,+∞),使不等式f x≤gx﹣ex成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】剪紙藝術(shù)是最古老的中國(guó)民間藝術(shù)之一,作為一種鏤空藝術(shù),它能給人以視覺(jué)上以透空的感覺(jué)和藝術(shù)享受.在中國(guó)南北方的剪紙藝術(shù),通過(guò)一把剪刀、一張紙、就可以表達(dá)生活中的各種喜怒哀樂(lè).如圖是一邊長(zhǎng)為1的正方形剪紙圖案,中間黑色大圓與正方形的內(nèi)切圓共圓心,圓與圓之間是相切的,且中間黑色大圓的半徑是黑色小圓半徑的2倍,若在正方形圖案上隨機(jī)取一點(diǎn),則該點(diǎn)取自白色區(qū)域的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn),用電量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖所示,用電量在的居民戶數(shù)比用電量在的居民戶數(shù)多11戶.

1)求直方圖中,的值;

2)(i)用樣本估計(jì)總體,如果希望至少85%的居民月用電量低于標(biāo)準(zhǔn),求月用電量的最低標(biāo)準(zhǔn)應(yīng)定為多少度,并說(shuō)明理由;

ii)若將頻率視為概率,現(xiàn)從該市所有居民中隨機(jī)抽取3戶,其中月用電量低于(i)中最低標(biāo)準(zhǔn)的居民戶數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.

1)求C1的極坐標(biāo)方程;

2)若C1與曲線C2ρ2sinθ交于AB兩點(diǎn),求|OA||OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是等邊三角形,,.

1)若,求三棱錐的體積;

2)若,則在線段上是否存在一點(diǎn),使平面平面.若存在,求線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案