【題目】某高中在校學生2 000人,高一年級與高二年級人數(shù)相同并且都比高三年級多1人.為了響應市教育局“陽光體育”號召,該校開展了跑步和跳繩兩項比賽,要求每人都參加而且只參加其中一項,各年級參與項目人數(shù)情況如下表:

  年級

項目  

高一年級

高二年級

高三年級

跑步

a

b

c

跳繩

x

y

z

其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學生對本次活動的滿意度,采用分層抽樣從中抽取一個200人的樣本進行調(diào)查,則高二年級中參與跑步的同學應抽取多少人?

【答案】36

【解析】試題分析:設高一,高二,高三人數(shù)分別為,則高一,高二,高三人數(shù)分別為667,667,666. 全校參與跳繩的人數(shù)占總?cè)藬?shù)的,所以跑步的人數(shù)為,所以,抽取樣本為,即比例為這樣跑步的應抽取,跑步的抽取率所以高二應抽取.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, 底面,且, , 、分別是、的中點.

(1)求證:平面平面

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù), ).以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.設曲線的極坐標方程為.

(Ⅰ)設為曲線上任意一點,求的取值范圍;

(Ⅱ)若直線與曲線交于兩點 ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖和地區(qū)用戶滿意度評分的頻數(shù)分布表.

地區(qū)用戶滿意度評分的頻率分布直方圖

地區(qū)用戶滿意度評分的頻數(shù)分布表

滿意度評分分組

頻數(shù)

2

8

14

10

6

(1)在答題卡上作出地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可);

(2)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

估計哪個地區(qū)的滿意度等級為不滿意的概率大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》(二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題的必要而不充分條件;

設命題實數(shù)滿足方程表示雙曲線.

(1)若“”為真命題,求實數(shù)的取值范圍;

(2)若“”為假命題,“”為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,給出四個結(jié)論:

①函數(shù)是最小正周期為的奇函數(shù);

②函數(shù)的圖像的一條對稱軸是

③函數(shù)圖像的一個對稱中心是;

④函數(shù)的遞增區(qū)間為.則正確結(jié)論的個數(shù)為( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形中,是邊長為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面在面的同側(cè)

() 求證:平面

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大小(不要求具體解答過程,給出結(jié)論即可);

(Ⅱ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認同”,請根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關;

(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自城市的概率是多少?

合計

認可

不認可

合計

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案