如圖,三棱錐P-ABC中,PA=AB,PC=BC,E、F、G分別為PA、AB、PB的中點,
(1)求證:EF平面PBC;
(2)求證:EF⊥平面ACG.
證明:(1)∵E、F分別為PA、AB的中點,∴EFPB,
又∵PB?平面PBC,EF?平面PBC,
∴EF平面PBC.
(2)∵PA=AB,PC=BC,G為PB的中點,
∴PB⊥AG,PB⊥CG,
又∵AG∩CG=G,
∴PB⊥面ACG,
又∵E、F分別為PA、AB的中點,
∴EF⊥平面ACG.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面α與平面β平行的條件可以是( 。
A.平面α內(nèi)有無窮多條直線與β平行
B.直線lα,且lβ
C.直線l?α,m?β,且lβ,mα
D.平面α內(nèi)的任何直線都平行于β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求證:DB⊥平面B1BCC1;
(2)設(shè)E是DC上一點,試確定E的位置,使得D1E平面A1BD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在三棱錐P-ABC中,PA⊥BC,PB⊥AC,則點P在平面ABC上的射影為△ABC的( 。
A.重心B.外心C.內(nèi)心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,點P在側(cè)面BCC1B1及其邊界上運動,并且總是保持AP與BD1垂直,則動點P的軌跡為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中點,F(xiàn)是A1B的中點,
(1)求證:DF平面ABC;
(2)求證:AF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△OAB是邊長為4的正三角形,CO⊥平面OAB且CO=2,設(shè)D、E分別是OA、AB的中點.
(1)求證:OB平面CDE;
(2)求三棱錐O-CDE的體積;
(3)在CD上是否存在點M,使OM⊥平面CDE,若存在,則求出M點的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓O所在平面為α,AB為直徑,C是圓周上一點,且PA⊥AC,PA⊥AB,圖中直角三角形有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,E、F、G分別為AB、PC、DC的中點,
(1)求證:EF面PAD;
(2)若PA⊥平面ABCD,求證:面EFG⊥面ABCD.

查看答案和解析>>

同步練習(xí)冊答案