【題目】已知函數(shù).
(1)當,時,求滿足的的值;
(2)若函數(shù)是定義在上的奇函數(shù).
①存在,使得不等式有解,求實數(shù)的取值范圍;
②若函數(shù)滿足,若對任意且,不等式恒成立,求實數(shù)的最大值.
【答案】(1);(2)①;②.
【解析】分析:(1)把,代入,求解即可得答案.
(2)①函數(shù)是定義在上的奇函數(shù),得,代入原函數(shù)求解得的值,判斷函數(shù)為單調性,由函數(shù)的單調性可得的取值范圍.
②由,求得函數(shù),代入,化簡后得恒成立,令,,參數(shù)分離得在時恒成立,由基本不等即可求得的最大值.
詳解:解:(1)因為,,所以,
化簡得,解得(舍)或,
所以.
(2)因為是奇函數(shù),所以,所以,
化簡變形得:,
要使上式對任意的成立,則且,
解得:或,因為的定義域是,所以舍去,
所以,,所以.
①
對任意,,有:,
因為,所以,所以,
因此在上遞增,
因為,所以,
即在時有解,
當時,,所以.
②因為,所以,
所以,
不等式恒成立,即,
令,,則在時恒成立,
因為,由基本不等式可得:,當且僅當時,等號成立,
所以,則實數(shù)的最大值為.
奇偶性 | 單調性 | 轉化不等式 |
奇函數(shù) | 區(qū)間上單調遞增 | |
區(qū)間上單調遞減 | ||
偶函數(shù) | 對稱區(qū)間上左減右增 | |
對稱區(qū)間上左增右減 |
科目:高中數(shù)學 來源: 題型:
【題目】下圖為函數(shù)的部分圖象,、是它與軸的兩個交點,、分別為它的最高點和最低點,是線段的中點,且為等腰直角三角形.
(1)求的解析式;
(2)將函數(shù)圖象上的每個點的橫坐標縮短為原來的一半,再向左平移個單位長度得到的圖象,求的解析式及單調增區(qū)間,對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知底面為菱形,,,為對角線與的交點,底面且
(1)求異面直線與所成角的余弦值;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,且 .
(1)當( 為自然對數(shù)的底)時,討論的單調性;
(2)當 時,若函數(shù)存在最大值,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學組織了地理知識競賽,從參加考試的學生中抽出40名學生,將其成績(均為整數(shù))分成六組,,…,,其部分頻率分布直方圖如圖所示.觀察圖形,回答下列問題.
(1)求成績在的頻率,并補全這個頻率分布直方圖:
(2)估計這次考試的及格率(60分及以上為及格)和平均分;(計算時可以用組中值代替各組數(shù)據(jù)的平均值)
(3)從成績在和的學生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在《周易》中,長橫“”表示陽爻,兩個短橫“”表示陰爻.有放回地取陽爻和陰爻三次合成一卦,共有種組合方法,這便是《系辭傳》所說“太極生兩儀,兩儀生四象,四象生八卦”.有放回地取陽爻和陰爻一次有2種不同的情況,有放回地取陽爻和陰爻兩次有四種情況,有放回地取陽爻和陰爻三次,八種情況.所謂的“算卦”,就是兩個八卦的疊合,即共有放回地取陽爻和陰爻六次,得到六爻,然后對應不同的解析.在一次所謂“算卦”中得到六爻,這六爻恰好有三個陽爻三個陰爻的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進行美麗鄉(xiāng)村建設,規(guī)劃在長為10千米的河流OC的一側建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點為;觀光帶的后一部分為線段BC,如圖所示.
(1)求曲線段OABC對應的函數(shù)的解析式;
(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com