分析 (1)根據(jù)正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再與余弦定理聯(lián)立方程,可求出cosA的值,進(jìn)而求出A的值.
(2)把A=120°帶入sinB+sinC利用兩角和公式整理,最后利用三角函數(shù)的圖象與性質(zhì)求得其取最大值時(shí)B的度數(shù),進(jìn)而判斷三角形的形狀.
解答 解:由正弦定理得:a=2RsinA,b=2RsinB,c=2RsinC,
∵2asinA=(2b+c)sinB+(2c+b)sinC,
方程兩邊同乘以2R,
∴2a2=(2b+c)b+(2c+b)c,
整理得a2=b2+c2+bc,
∵由余弦定理得a2=b2+c2-2bccosA,
故cosA=-$\frac{1}{2}$,A=120°,
(2)由(Ⅰ)得:sinB+sinC=sinB+sin(60°-B)=$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB=sin(B+60°),
故當(dāng)B=30°時(shí),sinB+sinC取得最大值1,三角形為等腰鈍角三角形.
點(diǎn)評(píng) 本題主要考查了正弦定理和余弦定理的應(yīng)用.在解三角形問(wèn)題中經(jīng)常利用正弦定理和余弦定理完成邊角問(wèn)題的互化,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11 | B. | 22 | C. | 33 | D. | 44 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com