已知正實(shí)數(shù)x,y滿足x+y+3=xy,若對(duì)任意滿足條件的x,y,都有(x+y)2-a(x+y)+1≥0恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______.
(-∞,
]
分析:依題意,由正實(shí)數(shù)x,y滿足x+y+3=xy,可求得x+y≥6,由(x+y)
2-a(x+y)+1≥0恒成立可求得a≤x+y+
恒成立,利用雙鉤函數(shù)的性質(zhì)即可求得實(shí)數(shù)a的取值范圍.
解答:∵正實(shí)數(shù)x,y滿足x+y+3=xy,而xy≤
,
∴x+y+3≤
,
∴(x+y)
2-4(x+y)-12≥0,
∴x+y≥6或x+y≤-2(舍去),
∴x+y≥6.
又正實(shí)數(shù)x,y有(x+y)
2-a(x+y)+1≥0恒成立,
∴a≤x+y+
恒成立,
∴a≤
,
令x+y=t(t≥6,)g(t)=t+
,由雙鉤函數(shù)的性質(zhì)得g(t)在[6,+∞)上單調(diào)遞增,
∴
=g(t)
min=g(6)=6+
=
.
∴a≤
.
故答案為:(-∞,
].
點(diǎn)評(píng):本題考查基本不等式,考查雙鉤函數(shù)的單調(diào)性質(zhì),求得x+y≥6是關(guān)鍵,考查綜合分析與運(yùn)算的能力,屬于中檔題.