精英家教網 > 高中數學 > 題目詳情
若二次函數f(x)的圖象關于y軸對稱,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的取值范圍.
考點:簡單線性規(guī)劃的應用,二次函數的性質
專題:計算題,作圖題,函數的性質及應用,不等式的解法及應用
分析:由題意設二次函數f(x)=ax2+c,得到不等式組及目標函數,化為線性規(guī)劃問題求解.
解答: 解:∵二次函數f(x)的圖象關于y軸對稱,
∴設二次函數f(x)=ax2+c,
由題意可得,
1≤a+c≤2
3≤4a+c≤4
,
f(3)=9a+c,
作出其平面區(qū)域如下圖:

f(3)=9a+c在A點與B點取得最值,
a+c=2
4a+c=3
得,
A(
1
3
,
5
3
),
同理B(1,0);
又∵9×
1
3
+
5
3
=
14
3
,9×1+0=9,
14
3
≤f(3)≤9.
點評:本題考查了二次函數的性質及簡單線性規(guī)劃問題,由函數到線性規(guī)劃的轉化非常重要,是此題的突破口,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

計算:(log32)•(log26-1)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(1,2),
b
=(2x,x),
c
=(3,1),且(
a
+
b
)∥
c
,求實數x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A(m,1),B(-1,m),P(1,2),Q(-5,0),若AB∥PQ,則m=
 
.若AB⊥PQ,則m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知n∈N*,則1+2+22+…+2n=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設M是含有n個正整數的集合,如果M中沒有一個元素是M中另外兩個不同元素之和,則稱集合M是n級好集合.
(Ⅰ)判斷集合{1,3,5,7,9}是否是5級好集合,并說明理由;
(Ⅱ)給定正整數a,設集合M={a,a+1,a+2,…,a+k}是好集合,其中k為正整數,試求k的最大值,并說明理由;
(Ⅲ)對于任意n級好集合M,求集合M中最大元素的最小值(用n表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},求M∩N.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)在定義域(0,+∞)內為增函數,對任意的正數x,y滿足f(xy)=f(x)+f(y)成立,且f(3)=1,求滿足f(x)>f(x-1)+2的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一次函數f(x)滿足f(1)=2,f(3)=0,則f(x)=
 

查看答案和解析>>

同步練習冊答案