證明:cosα=
1
1+tan2α
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:運用同角三角函數(shù)基本關系式化簡證明左邊等于右邊即可.
解答: 證明:右邊=
1
1+tan2α
=
1
cos2α+sin2α
cos2α
=
cos2α
=cosα=左邊
故得證.
點評:本題主要考察了同角三角函數(shù)基本關系的運用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設矩陣A=
1
3
,
0
-1
,B=(
1
0
  
-2
1
)(t為參數(shù)),則(AB)-1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(
π
4
-β)=-
12
13
,-
π
4
<β<
4
,cos(α+
4
)=
4
5
4
<α<
4
,求:
(1)sin2β;
(2)sin(α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=8x與f(x)=0.3x(x∈R)的圖象都經(jīng)過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下幾種說法:
①若兩條直線平行,則它們的斜率相等;
②若兩條直線的斜率之積為-1,則它們互相垂直;
③若直線l的傾斜角為θ,則該直線的斜率k=tanθ;
④直線l的方程為
2x
a2
+
y
b2
=-1(ab≠0),則該直線在y軸上的截距為-b2
其中正確的說法的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α:“-2≤x≤5”,β:“m+1≤x≤2m-1”,若α是β的必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P為拋物線y2=16x上一點,則P到焦點與到定點(3,8)的距離的和的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長軸與短軸的和為18,焦距為6的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在底面是直角梯形的四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,則AD到平面PBC的距離為
 

查看答案和解析>>

同步練習冊答案