【題目】某中學(xué)共有1000名文科學(xué)生參加了該市高三第一次質(zhì)量檢查的考試,其中數(shù)學(xué)成績(jī)?nèi)缦卤硭荆?/span>
數(shù)學(xué)成績(jī)分組 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] |
人數(shù) | 60 | 400 | 360 | 100 |
(Ⅰ)為了了解同學(xué)們前段復(fù)習(xí)的得失,以便制定下階段的復(fù)習(xí)計(jì)劃,年級(jí)將采用分層抽樣的方法抽取100
名同學(xué)進(jìn)行問(wèn)卷調(diào)查. 甲同學(xué)在本次測(cè)試中數(shù)學(xué)成績(jī)?yōu)?5分,求他被抽中的概率;
(Ⅱ)年級(jí)將本次數(shù)學(xué)成績(jī)75分以下的學(xué)生當(dāng)作“數(shù)學(xué)學(xué)困生”進(jìn)行輔導(dǎo),請(qǐng)根據(jù)所提供數(shù)據(jù)估計(jì)“數(shù)
學(xué)學(xué)困生”的人數(shù);
(III)請(qǐng)根據(jù)所提供數(shù)據(jù)估計(jì)該學(xué)校文科學(xué)生本次考試的數(shù)學(xué)平均分.
【答案】(I);(II);(III).
【解析】
試題分析:(Ⅰ)根據(jù)分層抽樣的定義以及概率的意義進(jìn)行求解;(Ⅱ)求出,估計(jì)“數(shù)學(xué)學(xué)困生”的人數(shù)即可;(Ⅲ)根據(jù)平均數(shù)公式進(jìn)行求解即可.
試題解析:(Ⅰ)分層抽樣中,每個(gè)個(gè)體被抽到的概率均為:,
故甲同學(xué)被抽到的概率
(Ⅱ)由題意得.
設(shè)估計(jì)“數(shù)學(xué)學(xué)困生”人數(shù)為
.
故估計(jì)該中學(xué)“數(shù)學(xué)學(xué)困生”人數(shù)為人分
(III)該學(xué)校本次考試的數(shù)學(xué)平均分.
估計(jì)該學(xué)校本次考試的數(shù)學(xué)平均分為分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位: )和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)為何值時(shí),年利潤(rùn)最大?
附:對(duì)于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,
且,,分別為,的中點(diǎn).
(I)求證:平面;
(II)求證:平面平面;
(III)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,當(dāng)時(shí),與的圖象在處的切線相同.
(1)求的值;
(2)令,若存在零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列:,,,……,的各項(xiàng)均為正數(shù),且滿(mǎn)足條件:
①;②.
(1)若,,求出這個(gè)數(shù)列;
(2)若,求的所有取值的集合;
(3)若是偶數(shù),求的最大值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2=(注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫(xiě)出定義域;
(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓過(guò)坐標(biāo)原點(diǎn)且圓心在曲線上.
(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;
(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;
(3)設(shè)直線與(2)中所求圓交于點(diǎn)、, 為直線上的動(dòng)點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿(mǎn)足,其中,命題實(shí)數(shù)滿(mǎn)足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com