【題目】已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。
【答案】(1)(或);(2)或.
【解析】
試題分析:(1)根據(jù)動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比,建立方程,化簡(jiǎn)可得曲線C的方程.
(2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
試題解析:(1)由題意得|PA|=|PB| 2分;
故3分;
化簡(jiǎn)得:(或)即為所求。 5分;
(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,
將代入方程得,
所以|MN|=4,滿足題意。 8分;
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為+2
由圓心到直線的距離10分;
解得,此時(shí)直線的方程為
綜上所述,滿足題意的直線的方程為:或。 12分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)是橢圓上的一點(diǎn),在軸上的射影恰為橢圓的左焦點(diǎn),與中心的連線平行于右頂點(diǎn)與上頂點(diǎn)的連線,且左焦點(diǎn)與左頂點(diǎn)的距離等于,試求橢圓的離心率及其方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列中,在直線.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令,數(shù)列的前n項(xiàng)和為.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B為曲線C:y= 上兩點(diǎn),A與B的橫坐標(biāo)之和為4.(12分)
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點(diǎn),若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過(guò)橢圓右焦點(diǎn)作兩條互相垂直的弦與.當(dāng)直線斜率為0時(shí),.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如圖:
(Ⅰ)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(Ⅲ)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx﹣ )+b(ω>0),且函數(shù)圖象的對(duì)稱中心到對(duì)稱軸的最小距離為 ,當(dāng)x∈[0, ]時(shí),f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長(zhǎng)度得到函數(shù)g(x)圖象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com