OA
=(4,3) ,
OB
=(9 ,-2)
,則
1
5
AB
=
(1,-1)
(1,-1)
分析:先求出
AB
=
OB
-
OA
 的坐標,進而可得
1
5
AB
 的坐標.
解答:解:
AB
=
OB
-
OA
=(5,-5),∴
1
5
AB
=(1,-1),
故答案為:(1,-1).
點評:本題考查兩個向量的加減法的法則,以及其幾何意義,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標原點,
OA
=(-4,-3),
OB
=(12,-5),
OP
OA
+
OB
,若向量
OA
,
OP
的夾角與
OP
,
OB
的夾角相等,則實數(shù)λ的值為(  )
A、
13
5
B、
5
3
C、±
13
5
D、±
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標原點,
OA
=(-4,-3),
OB
=(12,-5),
OP
OA
+
OB
,若向量
OA
,
OP
的夾角與
OP
OB
的夾角相等,則實數(shù)λ的值為
13
5
13
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•上海模擬)如圖,⊙O半徑為2,直徑CD以O(shè)為中心,在⊙O所在平面內(nèi)轉(zhuǎn)動,當(dāng)CD 轉(zhuǎn)動時,OA固定不動,0°≤∠DOA≤90°,且總有BC∥OA,AB∥CD,若OA=4,BC與⊙O交于E,連AD,設(shè)CE為x,四邊形ABCD的面積為y.
(1)求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(2)當(dāng)x=2
3
(3)時,求四邊形ABCD在圓內(nèi)的面積與四邊形ABCD的面積之比;
(4)當(dāng)x取何值時,四邊形ABCD為直角梯形?連EF,此時OCEF變成什么圖形?(只需說明結(jié)論,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2003-2004學(xué)年上海市民辦中學(xué)八校高三(下)3月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,⊙O半徑為2,直徑CD以O(shè)為中心,在⊙O所在平面內(nèi)轉(zhuǎn)動,當(dāng)CD 轉(zhuǎn)動時,OA固定不動,0°≤∠DOA≤90°,且總有BC∥OA,AB∥CD,若OA=4,BC與⊙O交于E,連AD,設(shè)CE為x,四邊形ABCD的面積為y.
(1)求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(2)當(dāng)x=2(3)時,求四邊形ABCD在圓內(nèi)的面積與四邊形ABCD的面積之比;
(4)當(dāng)x取何值時,四邊形ABCD為直角梯形?連EF,此時OCEF變成什么圖形?(只需說明結(jié)論,不必證明).

查看答案和解析>>

同步練習(xí)冊答案