5.下列四個結論中:正確結論的個數(shù)是
①若x∈R,則$tanx=\sqrt{3}$是$x=\frac{π}{3}$的充分不必要條件;
②命題“若x-sinx=0,則x=0”的逆命題為“若x≠0,則x-sinx≠0”;
③若向量$\overrightarrow a\;,\;\overrightarrow b$滿足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$,則$\overrightarrow a∥\overrightarrow b$恒成立;( 。
A.1個B.2個C.3個D.0個

分析 ①,若x∈R,由$tanx=\sqrt{3}$⇒$x=\frac{π}{3}$+kπ;
②,命題的逆命題只交換條件和結論;
③,若向量$\overrightarrow a\;,\;\overrightarrow b$滿足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$⇒cosθ=±1(θ為$\overrightarrow{a}、\overrightarrow$的夾角);

解答 解:對于①,若x∈R,由$tanx=\sqrt{3}$⇒$x=\frac{π}{3}$+kπ,應是必要不充分條件,故錯;
對于②,命題“若x-sinx=0,則x=0”的逆命題為“若x=0,則x-sinx=0”,故錯;
對于③,若向量$\overrightarrow a\;,\;\overrightarrow b$滿足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$⇒cosθ=±1(θ為$\overrightarrow{a}、\overrightarrow$的夾角)則$\overrightarrow a∥\overrightarrow b$恒成立,故正確;
故選:A.

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|;
(1)用分段函數(shù)表示出f(x)的解析式;
(2)畫出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.命題“?x>0,都有x≥1”的否定為?x>0,使得x<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,直線x-y+2=0截以原點O為圓心的圓所得的弦長為2$\sqrt{2}$,
(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標軸交于點D,E,求|DE|的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=($\sqrt{x}$)2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線f(x)=2x2+1在點M(x0,y0)處的瞬時變化率為-4,則點M的坐標為(-1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( 。
參考數(shù)據(jù):$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x,y都是正數(shù),且lnx+lny=ln(x+y),則4x+y的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

同步練習冊答案