18.若3sinα+cosα=$\sqrt{10}$,則tanα的值為3.

分析 由題意和同角三角函數(shù)基本關系可得sinα,進而可得cosα,可得tanα

解答 解:∵3sinα+cosα=$\sqrt{10}$,∴cosα=$\sqrt{10}$-3sinα,
代入sin2α+cos2α=1可得sin2α+($\sqrt{10}$-3sinα)2=1,
解得sinα=$\frac{3\sqrt{10}}{10}$,∴cosα=$\sqrt{10}$-3sinα=$\frac{\sqrt{10}}{10}$,
∴tanα=$\frac{sinα}{cosα}$=3,
故答案為:3.

點評 本題考查三角函數(shù)計算,涉及同角三角函數(shù)基本關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.在等比數(shù)列{an}中,a5a8=6,a3+a10=5,則$\frac{{a}_{20}}{{a}_{13}}$=$\frac{3}{2}$或$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各組函數(shù)表示相等函數(shù)的個數(shù)是( 。
(1)y=$\frac{{x}^{2}-9}{x-3}$與y=x+3(x≠3)
(2)y=$\sqrt{{x}^{2}}$-1與y=x-1
(3)y=2x+1,x∈Z與y=2x-1,x∈Z.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)的定義域是(0,2),則f(3-3x)的定義域是(  )
A.(0,2)B.(-2,0)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若AB=1,則△ABC的周長為( 。
A.1+2sin(A+$\frac{π}{6}$)B.1+2sin(A+$\frac{π}{3}$)C.1+sin(A+$\frac{π}{6}$)D.1+sin(A+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.過點(m,n)且與直線nx-my+mn=0平行的直線一定還過點(0,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在坐標平面上,不等式|x|+|y|≤1所表示的平面區(qū)域的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.10件產品中有7件合格品,3件次品,從中任取3件產品進行檢查.
(1)抽出的3件產品都是合格品的抽法有多少種?
(2)抽出的3件產品中恰好有1件是次品的抽法有多少種?
(3)抽出的3件產品中至少有1件是次品的抽法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx=( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

同步練習冊答案