【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值
【答案】(1);
(2)面積最大為.
【解析】
(1)設(shè)出點(diǎn)的坐標(biāo),由為線段的中點(diǎn)得到的坐標(biāo),把的坐標(biāo)代入圓整理得線段的中點(diǎn)的軌跡方程;(2)聯(lián)立直線和橢圓,求出的長;設(shè)過且與直線平行的直線為,當(dāng)直線與橢圓相切時(shí),兩直線的距離取最大,求出,和兩平行直線間的距離,再由面積公式,即可得到最大值.
設(shè),由題意,
為線段的中點(diǎn),
即
又在圓上,
,即,
所以軌跡為橢圓,且方程為.
聯(lián)立直線和橢圓,
得到,即
即有
設(shè)過且與直線平行的直線為,
當(dāng)直線與橢圓相切時(shí),兩直線的距離取最大,
將代入橢圓方程得:
由相切的條件得
解得,
則所求直線為或,
故與直線的距離為,
則的面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:
①焦點(diǎn)在y軸上;
②焦點(diǎn)在x軸上
③拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6;
④拋物線的過焦點(diǎn)且垂直于對稱軸的弦的長為5;
⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使拋物線方程為y2=10x的條件是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費(fèi),若超過15次,超過部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓中心為坐標(biāo)原點(diǎn)O,對稱軸為坐標(biāo)軸,且過M(2, ) ,N(,1)兩點(diǎn),
(I)求橢圓的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,),(0,)的距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與A交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點(diǎn),且與圓關(guān)于直線對稱.
(1)求圓的方程;
(2)若、為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值;
(3)已知直線,是直線上的動(dòng)點(diǎn),過作圓的兩條切線、,切點(diǎn)為、,試探究直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺(tái)“新聞現(xiàn)場”播報(bào),近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因?yàn)楦忻皝淼尼t(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知bcos(A)asin(B)=0,且sinA,sinB,2sinC成等比數(shù)列.
(1)求角B;
(2)若a+c=λb(λ∈R),求λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com