【題目】已知圓過點,且與圓關(guān)于直線對稱.
(1)求圓的方程;
(2)若、為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值;
(3)已知直線,是直線上的動點,過作圓的兩條切線、,切點為、,試探究直線是否過定點,若過定點,求出定點;若不過定點,請說明理由.
【答案】(1);(2);(3)
【解析】
(1)設出圓心坐標,由與關(guān)于直線對稱,根據(jù)中點坐標公式及斜率的關(guān)系列出關(guān)系式,整理求出與的值,再由圓過點,確定出圓方程即可;
(2)設圓心到直線、的距離分別為,,則,由坐標求出的值,表示出與,進而表示出,利用基本不等式求出最大值即可;
(3)由題意可得:、、、四點共圓且在以為直徑的圓上,設出坐標,表示出以為直徑的圓,與圓方程結(jié)合確定出直線方程,即可得到直線恒過的定點坐標.
解:(1)設圓心,根據(jù)題意得:,
解得:,
圓方程為,
把代入得:,即圓方程為;
(2)設圓心到直線、的距離分別為,,則,
,,
當且僅當,即時取等號,
,
則四邊形的面積最大值為;
(3)直線過定點,定點坐標為,理由為:
由題意可得:、、、四點共圓且在以為直徑的圓上,
設,其方程為,即①,
又、在圓上②,
②①得:直線的方程為,即,
由,得,
則直線過定點.
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流類”大學就業(yè)部從該校2018年已就業(yè)的大學本科畢業(yè)生中隨機抽取了100人進行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)將同一組數(shù)據(jù)用該區(qū)間的中點值作代表,求這100人月薪收入的樣本平均數(shù);
(2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;
方案二:每人按月薪收入的樣本平均數(shù)的收。
用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的離心率為,左,右焦點分別為F1,F2,過F1的直線交橢圓C于A,B兩點,△AF2B的周長為8,
(1)求該橢圓C的方程.
(2)設P為橢圓C的右頂點,Q為橢圓C與y軸正半軸的交點,若直線l:yx+m,(﹣1<m<1)與圓C交于M,N兩點,求P、M、Q、N四點組成的四邊形面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點為,離心率.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com