17.某學校數(shù)學興趣班共有14人,分為兩個小組,在一次階段考試中兩個小組成績的莖葉圖如圖所示,其中甲組學生成績的平均數(shù)是88,乙組學生成績的中位數(shù)是89,則m+n的值是12.

分析 利用平均數(shù)求出m的值,中位數(shù)求出n的值,解答即可.

解答 解:∵甲組學生成績的平均數(shù)是88,
∴由莖葉圖可知
78+86+84+88+95+90+m+92=88×7,
解得m=3;
又乙組學生成績的中位數(shù)是89,
∴n=9,
∴m+n=12.
故答案為:12.

點評 本題考查了數(shù)據(jù)的平均數(shù)與中位數(shù)的計算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.$\root{3}{{{{(-4)}^3}}}+{(-\frac{1}{8})^{-\frac{4}{3}}}+{(lg2)^2}+lg5•lg20$=13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知$f(x)=\left\{\begin{array}{l}{x^2}+({a+b})x+2,x≤0\\ 2,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0\end{array}\right.$,其中a是方程x+lgx=4的解,b是方程x+10x=4的解,如果關(guān)于x的方程f(x)=x的所有解分別為x1,x2,…,xn,記$\sum_{i=1}^n{{x_i}={x_1}+{x_2}+…+{x_n}}$,則$\sum_{i=1}^n{x_i}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)x∈R,則“x=1”是“x2-3x+2=0”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.對a、b∈R,記$max\left\{{a\;,\;\;b}\right\}=\left\{\begin{array}{l}a\;,\;\;a≥b\\ b\;,\;\;a<b\end{array}\right.$,函數(shù)f(x)=max{|x|,-x2-2x+2},x∈(-4,3)
(1)求f(0),f(-3);
(2)寫出解析式,并作出f(x)的圖象;
(3)就k的值討論關(guān)于x的議程f(x)=k解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.命題“若x2=1,則x=1或x=-1”的逆否命題為(  )
A.若x2=1,則x≠1且x≠-1B.若x2≠1,則x≠1且x≠-1
C.若x≠1且x≠-1,則x2≠1D.若x≠1或x≠-1,則x2≠1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}\right.$,則$z=\frac{y-4}{x-3}$的取值范圍是( 。
A.(-∞,-4]∪[3,+∞)B.(-∞,-2]∪[-1,+∞)C.[-2,-1]D.[-4,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,在四棱錐P-ABCD中,G為AD的中點,側(cè)面PAD⊥底面ABCD.底面ABCD是邊長為a的菱形,且∠D A B=60°,側(cè)面PAD為正三角形.求證:AD⊥平面PGB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.單調(diào)遞增數(shù)列數(shù)列{an}的通項公式為an=n2+bn,則實數(shù)b的取值范圍為(-3,+∞).

查看答案和解析>>

同步練習冊答案