【題目】已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于, 兩點, 中點.

)當垂直時,求證: 過圓心

)當,求直線的方程.

)設,試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.

【答案】見解析;.(

【解析】試題分析:(I)由已知,故,所以直線的方程為,即可證明;(II)當直線軸垂直時,易知符合題意;當直線與軸不垂直時,設直線的方程為,利用圓心到直線的距離等于半徑,即可求解;(III)當軸垂直時,易得, ,求得;當的斜率存在時,設直線的方程為,代入圓的方程,利用根與系數(shù)的關系,化簡即可求解定值.

試題解析:()由已知,故,所以直線的方程為.

將圓心代入方程易知過圓心.

)當直線軸垂直時,易知符合題意;

當直線與軸不垂直時,設直線的方程為,由于,

所以,由,解得.

故直線的方程為.

)當軸垂直時,易得,又,則,

,故,.

的斜率存在時,設直線的方程為,代入圓的方程得

,則.

,即,

.又由

.

,

綜上, 的值為定值,且.

另解一:連結,延長交于點,由()知,又,

.于是有.

,得.

.

另解二:連結并延長交直線于點,連結, ,由()知,又,

所以四點都在以為直徑的圓上,由相交弦定理得

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,若橢圓與圓相交于M,N兩點,且圓E在橢圓內的弧長為.

(1)求橢圓的方程;

(2)過橢圓的上焦點作兩條相互垂直的直線,分別交橢圓于A,B、C,D,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,則使不等式a2016>2017成立的所有正整數(shù)a1的集合為(
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的一個焦點與拋物線 的焦點相同,F(xiàn)1 , F2為橢圓的左、右焦點.M為橢圓上任意一點,△MF1F2面積的最大值為4

(1)求橢圓C的方程;
(2)設橢圓C上的任意一點N(x0 , y0),從原點O向圓N:(x﹣x02+(y﹣y02=3作兩條切線,分別交橢圓于A,B兩點.試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱中,側棱與底面垂直,,,分別是的中點.

(1)求證:平面;

(2)求證:平面;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側棱底面,且側棱的長是,點分別是的中點.

(Ⅰ)證明: 平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A(0,0),B(4,3),若A,B,C三點按順時針方向排列構成等邊三角形ABC,且直線BC與x軸交于點D.
(1)求cos∠CAD的值;
(2)求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2, ,E、F分別為AD、PC中點.
(1)求點F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E﹣PC﹣D的大。

查看答案和解析>>

同步練習冊答案