5.已知條件p:2k-1≤x≤-3k,條件q:-1<x≤3,且p是q的必要條件,則實(shí)數(shù)k的取值范圍是k≤-1.

分析 根據(jù)集合的包含關(guān)系得到關(guān)于k的不等式組,解出即可.

解答 解:∵p:2k-1≤x≤-3k,條件q:-1<x≤3,且p是q的必要條件,
∴(-1,3]⊆[2k-1,-3k],
∴$\left\{\begin{array}{l}{-1≥2k-1}\\{3≤-3k}\end{array}\right.$,解得:k≤-1,
故答案為:k≤-1.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={-2,-1,0,1,2},集合B={x|x2≤1},A∩B=( 。
A.{-2,-1,0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.住在狗熊嶺的7只動(dòng)物,它們分別是熊大,熊二,吉吉,毛毛,蹦蹦,蘿卜頭,圖圖.為了更好的保護(hù)森林,它們要選出2只動(dòng)物作為組長(zhǎng),則熊大,熊二至少一個(gè)被選為組長(zhǎng)的概率為( 。
A.$\frac{11}{42}$B.$\frac{1}{2}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在直角坐標(biāo)系xOy中,設(shè)集合Ω={(x,y)|0≤x≤2,0≤y≤1},在區(qū)域Ω內(nèi)任取一點(diǎn)P(x,y),則滿足x+y≥1的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合A={-2,-1,0,2},B={x|x2=2x},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=($\frac{1}{2}$)x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱(chēng),令h(x)=g(1-x2),則關(guān)于函數(shù)y=h(x)的下列4個(gè)結(jié)論:
①函數(shù)y=h(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;         
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號(hào)為②③④.(將你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={-2},求實(shí)數(shù)p、q、r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD與
平面ABCD所成的角依次是$\frac{π}{4}$和$arctan\frac{1}{2}$,AP=2,E、F依次是PB、PC的中點(diǎn);
(1)求異面直線EC與PD所成角的大小;(結(jié)果用反三角函數(shù)值表示)
(2)求三棱錐P-AFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列判斷中正確的是(  )
A.$f(x)={(\sqrt{x})^2}$是偶函數(shù)B.$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函數(shù)
C.$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是偶函數(shù)D.$f(x)=\frac{{\sqrt{4-{x^2}}}}{|x-3|-3}$是奇函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案