(09年濟(jì)寧質(zhì)檢一理)(12分)
如圖,在三棱柱中,所有的棱長都為2,.
(Ⅰ)求證:;
(Ⅱ)當(dāng)三棱柱的體積最大時(shí),求平面與平面所成的銳角的余弦值.
解析:(Ⅰ)證明:取的中點(diǎn),連接,
在三棱柱中,所有棱長都為2,
則,所以平面
而平面,故
(Ⅱ)當(dāng)三棱柱的體積最大時(shí),點(diǎn)到平面的距離最大,此時(shí)平面.設(shè)平面與平面的交線為,
在三棱柱中,,平面,則,
過點(diǎn)作交于點(diǎn),連接.由,知平面,
則,故為平面與平面所成二面角的平面角。
在中,,則
在中,,,
即平面與平面所成銳角的余弦值為。
另解:當(dāng)三棱柱的體積最大時(shí),點(diǎn)到平面的距離最大,此時(shí)平面.以所在的直線分別為軸,建立直角坐標(biāo)系,依題意得.
由得,設(shè)平面的一個(gè)法向量為
而,則,取
而平面,則平面的一個(gè)法向量為
于是,
故平面與平面所成銳角的余弦值為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年濟(jì)寧質(zhì)檢一理)(14分)
已知數(shù)列的前項(xiàng)和為,對一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,且在點(diǎn)處的切線的斜率為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè),,等差數(shù)列的任一項(xiàng),其中是中最小的數(shù),,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濟(jì)寧質(zhì)檢一理)(12分)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),使不等式,求實(shí)數(shù)的取值范圍;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濟(jì)寧質(zhì)檢一理)(12分)
某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹,求甲取球次?shù)的數(shù)學(xué)期望;
(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年濟(jì)寧質(zhì)檢一理)已知點(diǎn)滿足,點(diǎn)在圓上,則的最大值與最小值為
A.6,3 B.6,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com