分析:根據(jù)函數(shù)奇偶性的定義逐項進行判斷即可得到答案.
解答:解:A、令f(x)=|x|,定義域是R,且f(-x)=|-x|=|x|=f(x),y=|x|是偶函數(shù),故A不符合題意;
B、令f(x)=3-x,定義域是R,且f(-x)=3+x≠-f(x),是非奇非偶函數(shù),故B不符合題意;
C、令f(x)=
,定義域是{x|x≠0},且f(-x)=-
=-f(x),是奇函數(shù),故C符合題意;
D、令f(x)=-x
2+4,定義域是R,且f(-x)═-(-x)
2+4═-x
2+4=f(x),是偶函數(shù),故D不符合題意;
故選C.
點評:本題考查函數(shù)奇偶性的判斷問題,定義是判斷函數(shù)奇偶性的基本方法,屬基礎(chǔ)題.