【題目】已知曲線在點(diǎn)處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(Ⅱ) .
【解析】試題分析:(1)由的定義域?yàn)?/span>,得,因?yàn)?/span>,所以,代入,令, ,即可求解函數(shù)的單調(diào)區(qū)間;
(2)由函數(shù)得可得在上是減函數(shù),在上為增函數(shù),由在區(qū)間上沒有零點(diǎn),得在上恒成立,根據(jù),得,設(shè),求解函數(shù)的最值,即可得到結(jié)論。
試題解析:
解:(Ⅰ) 的定義域?yàn)?/span>, .
因?yàn)?/span>,所以, , .
令,得,令,得,
故函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(Ⅱ),由,得,
設(shè),所以在上是減函數(shù),在上為增函數(shù).
因?yàn)?/span>在區(qū)間上沒有零點(diǎn),所以在上恒成立,
由,得,令,則.
當(dāng)時(shí), ,所以在上單調(diào)遞減;
所以當(dāng)時(shí), ,故,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時(shí)可獲得的利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問卷.對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
做不到科學(xué)用眼 | 能做到科學(xué)用眼 | 合計(jì) | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計(jì) | 75 | 25 | 100 |
(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)若在犯錯(cuò)誤的概率不超過的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.
獨(dú)立性檢驗(yàn)臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡陽市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),則應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,底面,是上的點(diǎn).
(1)求證:平面;
(2)設(shè),若是的中點(diǎn),且直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對(duì)稱,問:橢圓上是否存在點(diǎn)(點(diǎn)在一象限),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在10名學(xué)生中,男生有x名,現(xiàn)從10名學(xué)生中任選6人去參加某項(xiàng)活動(dòng):①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①為必然事件,②為不可能事件,③為隨機(jī)事件,則x=( )
A.5B.6C.3或4D.5或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是和(),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com