(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點(diǎn)。

(1)證明:平面平面
(2)證明:平面ABE;
(3)設(shè)P是BE的中點(diǎn),求三棱錐的體積。

(1)對(duì)于面面垂直的證明,一般要通過線面垂直的證明來得到,分析條件得到,得到證明。
(2)對(duì)于線面平行的證明,主要是利用線線平行來判定得到 。(3)

解析試題分析:(1)證明:在,∵AC=2BC=4,
  由已知 

又∵
(2)證明:取AC的中點(diǎn)M,連結(jié) ,
∴ 直線FM//面ABE在矩形中,E、M都是中點(diǎn) ∴
∴直線又∵ ∴ 

(3)在棱AC上取中點(diǎn)G,連結(jié)EG、BG,在BG上取中點(diǎn)O,
連結(jié)PO,則PO//, 點(diǎn)P到面的距離等于點(diǎn)O到平面的距離。
過O作OH//AB交BC與H,則平面 在等邊中可知
中,可得
考點(diǎn):立體幾何中體積運(yùn)算,以及面面位置關(guān)系的判定。
點(diǎn)評(píng):解決該試題的關(guān)鍵是熟練的運(yùn)用線面和面面的判定定理和性質(zhì)定理解題,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為,是四棱錐的高。

(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且、分別為、、的中點(diǎn).

(1)求證:∥平面;
(2)求證:⊥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達(dá)式;
(Ⅱ)當(dāng)x為何值時(shí),取得最大值?
(Ⅲ)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
如圖,已知三棱錐OABC的側(cè)棱OAOB,OC兩兩垂直,且OA=2,OB=3,OC=4,EOC的中點(diǎn).

(1)求異面直線BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且 

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案