已知函數(shù)f(x)=cos2
x
2
-
π
12
),g(x)=sin2x.設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸,則g(x0)的值等于
 
分析:先將f(x)的解析式進(jìn)行降冪,再由x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸可得到x0的關(guān)系式,將x0的關(guān)系式代入即可得到答案.
解答:解:由題設(shè)知f(x)=
1
2
[1+cos(x-
π
6
)].
因?yàn)閤=x0是函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸,所以x0-
π
6
=kπ,即2x0=2kπ+
π
3
(k∈Z).
所以g(x0)=sin2x0=sin(2kπ+
π
3
)=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題主要考查三角函數(shù)的二倍角公式和對(duì)稱(chēng)軸問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同實(shí)數(shù)解的充要條件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案