【題目】一只紅玲蟲的產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了7組觀測數(shù)據(jù)如下表:

溫度

21

23

25

27

29

32

35

產(chǎn)卵數(shù)/個(gè)

7

11

21

24

66

115

325

為了預(yù)報(bào)一只紅玲蟲在時(shí)的產(chǎn)卵數(shù),根據(jù)表中的數(shù)據(jù)建立了的兩個(gè)回歸模型.模型①:先建立的指數(shù)回歸方程,然后通過對數(shù)變換,把指數(shù)關(guān)系變?yōu)?/span>;模型②:先建立的二次回歸方程,然后通過變換,把二次關(guān)系變?yōu)?/span>的線性回歸方程:.

1)分別利用這兩個(gè)模型,求一只紅玲蟲在時(shí)產(chǎn)卵數(shù)的預(yù)測值;

2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.(參考數(shù)據(jù):模型①的殘差平方和,模型①的相關(guān)指數(shù);模型②的殘差平方和,模型②的相關(guān)指數(shù);,,,,,,,

【答案】1,2)模型①得到的預(yù)測值更可靠,理由見解析

【解析】

1)把分別代入兩個(gè)模型求解即可;

2)通過殘差及相關(guān)指數(shù)的大小進(jìn)行判定比較.

(1)當(dāng)時(shí),根據(jù)模型①,得 ,根據(jù)模型②,得.

2)模型①得到的預(yù)測值更可靠.理由1:因?yàn)槟P廷俚臍埐钇椒胶?/span>小于模型②的殘差平方和,所以模型①得到的預(yù)測值比模型②得到的預(yù)測值更可靠;理由2:模型①的相關(guān)指數(shù)大于模型②的相關(guān)指數(shù),所以模型①得到的預(yù)測值比模型②得到的預(yù)測值更可靠;理由3:因?yàn)橛赡P廷,根?jù)變換后的線性回歸方程計(jì)算得到的樣本點(diǎn)分布在一條直線的附近;而由模型②,根據(jù)變換后的線性回歸方程得到的樣本點(diǎn)不分布在一條直線的周圍,因此模型②不適宜用來擬合的關(guān)系;所以模型①得到的預(yù)測值比模型②得到的預(yù)測值更可靠.(注:以上給出了3種理由,考生答出其中任意一種或其他合理理由均可得)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長為4的等腰直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)動直線l交橢圓CPQ兩點(diǎn),直線OPOQ的斜率分別為k,k.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.

1)求圓的方程;

2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

1)求的值;

2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

1)求圖中的值,并估計(jì)該品種花苗綜合評分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,直線,,與曲線所圍成的曲邊梯形的面積為.其中,且.

1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的值;

2)請指出,,的大小,并且證明;

3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計(jì)劃用兩張鐵絲網(wǎng)在一片空地上圍成一個(gè)梯形養(yǎng)雞場,,,已知兩段是由長為的鐵絲網(wǎng)折成,兩段是由長為的鐵絲網(wǎng)折成.設(shè)上底的長為,所圍成的梯形面積為.

1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;

2)當(dāng)x為何值時(shí),養(yǎng)雞場的面積最大?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê喎Q為弧田的。┖鸵詧A弧的端點(diǎn)為端點(diǎn)的線段(簡稱 (弧田的弦)圍成的平面圖形,公式中指的是弧田的弦長,等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列關(guān)于函數(shù)的說法,不正確的是(

A.的圖象關(guān)于對稱

B.上有2個(gè)零點(diǎn)

C.在區(qū)間上單調(diào)遞減

D.函數(shù)圖象向右平移個(gè)單位,所得圖像對應(yīng)的函數(shù)為奇函數(shù)

查看答案和解析>>

同步練習(xí)冊答案