【題目】定義運(yùn)算為:a*b= ,如1*2=1,則函數(shù)f(x)=|2x*2﹣x﹣1|的值域?yàn)椋?/span> )
A.[0,1]
B.[0,1)
C.[0,+∞)
D.[1,+∞)
【答案】B
【解析】解:根據(jù)新定義a*b= ,
那么:2x*2﹣x= ,
∴函數(shù)f(x)=|2x*2﹣x﹣1|= ,
又∵當(dāng)x≤0時(shí),2x∈(0,1],
∴﹣1<2x﹣1≤0,
則:|2x﹣1|∈[0,1),
又∵當(dāng)x>0時(shí),2﹣x∈(0,1),
∴﹣1<2﹣x﹣1<0,
則:|2﹣x﹣1|∈(0,1),
綜上所得函數(shù)f(x)=|2x*2﹣x﹣1|的值域?yàn)閇0,1).
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值域的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面, , , 是棱的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求平面將此三棱柱分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中不表示同一函數(shù)的是( )
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸是短軸的兩倍,點(diǎn)P( , )在橢圓上,不過(guò)原點(diǎn)的直線(xiàn)l與橢圓相交于A、B兩點(diǎn),設(shè)直線(xiàn)OA、l、OB的斜率分別為k1、k、k2 , 且k1、k、k2恰好構(gòu)成等比數(shù)列,記△AOB的面積為S.
(1)求橢圓C的方程;
(2)試判斷|OA|2+|OB|2是否為定值?若是,求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由?
(3)求△AOB面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:x2+y2+4x﹣2y+3=0,直線(xiàn)l過(guò)點(diǎn)P(﹣3,0),圓M的圓心坐標(biāo)是;若直線(xiàn)l與圓M相切,則切線(xiàn)在y軸上的截距是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的菱形,∠BAD=60°,側(cè)棱PA⊥底面ABCD,E、F分別是PA、PC的中點(diǎn).
(Ⅰ)證明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一點(diǎn)M使得二面角E﹣BD﹣M的大小為60°.若存在,求出PM的長(zhǎng),不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四面體的六條棱中,有五條棱長(zhǎng)都等于a,則該四面體的體積的最大值為( )
A. ?a3
B. ?a3
C. ?a3
D. ?a3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x2+2(a﹣1)x+2在區(qū)間[﹣1,2]上單調(diào),則實(shí)數(shù)a的取值范圍為( )
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com