如圖是某幾何體的三視圖,它的正視圖和側(cè)視圖均為矩形,俯視圖為正三角形(長度單位:cm)
(1)試說出該幾何體是什么幾何體;
(2)按實(shí)際尺寸畫出該幾何體的直觀圖,并求它的表面積及體積.(只要做出圖形,不要求寫作法)

(1)三棱柱 ;(2)。

解析試題分析:根據(jù)三視圖的長度特征:“長對(duì)正,寬相等,高平齊”,可知該三視圖所對(duì)應(yīng)的幾何體的直觀圖是底面是邊長為4的正三角形,高為2的直三棱柱,然后利用斜二測畫法畫出該幾何體的直觀圖,再利用三棱柱的表面積公式、體積公式求解。

(1)該幾何體是三棱柱                     3分
(2)直觀圖                  5分
因?yàn)樵搸缀误w是底面邊長為4的等邊三角形,幾何體的高為2,
所以
,       10分
     12分
考點(diǎn):(1)如何根據(jù)幾何體三視圖畫出其的直觀圖;(2)斜二測畫法;(3)棱柱的表面積與體積公式。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在四棱錐中,平面,,的中點(diǎn),上的點(diǎn)且,為△邊上的高.
(1)證明:平面;
(2)若,,求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,三棱錐中,平面.

(1)求證:平面
(2)若,中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點(diǎn)H、G分別是線段EF、BC的中點(diǎn).
(1)求證:平面AHC平面;(2)(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)A1在底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點(diǎn)P為B1C1的中點(diǎn),求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

一個(gè)正四棱柱的各個(gè)頂點(diǎn)在一個(gè)直徑為2cm的球面上。如果正四棱柱的底面邊長為1cm,那么該棱柱的表面積為     cm2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若等腰直角三角形的直角邊長為2,則以一直角邊所在的直線為軸旋轉(zhuǎn)一周所成的幾何體體積是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在邊長為5+的長方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M,N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,求圓錐的全面積與體積.

查看答案和解析>>

同步練習(xí)冊答案