已知橢圓:()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.
(1) (2) 圓必過定點(diǎn)和
解析試題分析:(1)設(shè)點(diǎn)的坐標(biāo)分別為,則,故,可得,
所以,,
∴,所以橢圓的方程為.
(2)設(shè)的坐標(biāo)分別為,則,. 由,可得,即,
又圓的圓心為半徑為,故圓的方程為,即,也就是,令,可得或,
故圓必過定點(diǎn)和.
考點(diǎn):橢圓與圓的方程及性質(zhì)
點(diǎn)評:第一小題利用向量的坐標(biāo)運(yùn)算及橢圓定義可求得方程;第二小題判定曲線是否過定點(diǎn)只需看曲線方程中能否轉(zhuǎn)化出與參數(shù)無關(guān)的關(guān)系式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知與拋物線交于A、B兩點(diǎn),
(1)若|AB|="10," 求實(shí)數(shù)的值。
(2)若, 求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請判斷命題P的真假,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于()兩點(diǎn),且.
(1)求該拋物線的方程;
(2)為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A(,),B(,)是函數(shù)的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線上,且.
(1)求+的值及+的值
(2)已知,當(dāng)時(shí),+++,求;
(3)在(2)的條件下,設(shè)=,為數(shù)列{}的前項(xiàng)和,若存在正整數(shù)、,
使得不等式成立,求和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過點(diǎn)引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,線段的兩個(gè)端點(diǎn)、分別分別在軸、軸上滑動(dòng),,點(diǎn)是上一點(diǎn),且,點(diǎn)隨線段的運(yùn)動(dòng)而變化.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)為點(diǎn)的軌跡的左焦點(diǎn),為右焦點(diǎn),過的直線交的軌跡于兩點(diǎn),求的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M在直線l上,線段AB的中垂線與C交于P,Q兩點(diǎn).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn),度量點(diǎn)的坐標(biāo),如圖.
(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)時(shí),,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動(dòng)點(diǎn),恒有.請你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com