(坐標(biāo)系與參數(shù)方程選做題)
曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數(shù))上的點(diǎn)的最短距離為
 
分析:先分別將圓和直線的參數(shù)方程化成直角坐標(biāo)系下的方程,再利用點(diǎn)到直線的距離公式得圓心到直線的距離.
解答:解:C1
x=1+cosθ
y=sinθ
?(x-1)2+y2=1
;則圓心坐標(biāo)為(1,0).
C2
x=-2
2
+
1
2
t
y=1-
1
2
t
?x+y+2
2
-1=0
;
由點(diǎn)到直線的距離公式得圓心到直線的距離為d=
|1+2
2
-1|
2
=2
,
所以要求的最短距離為d-1=1,
故答案為1.
點(diǎn)評:本題主要考查了直線與圓的參數(shù)方程,以及利用點(diǎn)到直線的距離公式求解距離問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
,
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過點(diǎn)P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案