分析 (1)通過(guò)對(duì)(2n-1)an+2=(2n+1)an-1+8n2變形、整理可知$\frac{{a}_{n}}{2n+1}$-$\frac{{a}_{n-1}}{2n-1}$=2,進(jìn)而可知數(shù)列{$\frac{{a}_{n}}{2n+1}$}是以$\frac{{a}_{1}}{3}$=1為首項(xiàng)、2為公差的等差數(shù)列,計(jì)算即得結(jié)論;
(2)通過(guò)裂項(xiàng)可知bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并項(xiàng)相加即得結(jié)論.
解答 解:(1)∵(2n-1)an+2=(2n+1)an-1+8n2,
∴(2n-1)an-(2n+1)an-1=2(4n2-1)=2(2n+1)(2n-1),
∴$\frac{{a}_{n}}{2n+1}$-$\frac{{a}_{n-1}}{2n-1}$=2,
∴數(shù)列{$\frac{{a}_{n}}{2n+1}$}是以$\frac{{a}_{1}}{3}$=1為首項(xiàng)、2為公差的等差數(shù)列,
∴$\frac{{a}_{n}}{2n+1}$=1+2(n-1)=2n-1,
∴數(shù)列{an}的通項(xiàng)an=(2n+1)(2n-1)=4n2-1;
(2)∵an=(2n+1)(2n-1),
∴bn=$\frac{1}{a_n}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求解方法,解題時(shí)要注意構(gòu)造法和裂項(xiàng)求和法的合理運(yùn)用.注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-i | B. | 1+2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A.B.D三點(diǎn)共線 | B. | A.B.C三點(diǎn)共線 | C. | B.C.D三點(diǎn)共線 | D. | A.C.D三點(diǎn)共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 5 | C. | -8 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com