【題目】已知雙曲線),直線,交于P、Q兩點(diǎn),P關(guān)于y軸的對(duì)稱點(diǎn),直線y軸交于點(diǎn);

1)若點(diǎn)的一個(gè)焦點(diǎn),求的漸近線方程;

2)若,點(diǎn)P的坐標(biāo)為,且,求k的值;

3)若,求n關(guān)于b的表達(dá)式.

【答案】1;(2;(3

【解析】

1)由雙曲線),點(diǎn)的一個(gè)焦點(diǎn),求出,由此能求出的標(biāo)準(zhǔn)方程,從而能求出的漸近線方程.

2)雙曲線為:,由定比分點(diǎn)坐標(biāo)公式,結(jié)合已知條件能求出k的值.

3)設(shè),,則,,由,

,由,得,

由此利用韋達(dá)定理,結(jié)合已知條件能求出n關(guān)于b的表達(dá)式.

雙曲線),點(diǎn)的一個(gè)焦點(diǎn),

,

的標(biāo)準(zhǔn)方程為:

的漸近線方程為.

2,

雙曲線為:,,,

,設(shè),

則由定比分點(diǎn)坐標(biāo)公式,得:

解得,,

.

3)設(shè),,則,

,得

,

,得,

,

,即,

,

化簡(jiǎn)得,

,

當(dāng),由,得,

,得

,代入,

化簡(jiǎn)得,解得

當(dāng)時(shí),滿足

當(dāng)時(shí),由,得(舍去),

綜上得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且0,若過 A,Q,F(xiàn)2三點(diǎn)的圓恰好與直線相切,過定點(diǎn) M(0,2)的直線與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線的斜率,在x軸上是否存在點(diǎn)P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說明理由;(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,,是曲線段是參數(shù),)的左、右端點(diǎn),上異于,的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為.

1)建立適當(dāng)?shù)臉O坐標(biāo)系,寫出點(diǎn)軌跡的極坐標(biāo)方程;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:為參數(shù)),,為直線上距離為的兩動(dòng)點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn)且不在直線上.

1)求曲線的普通方程及直線的直角坐標(biāo)方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B為橢圓的左、右頂點(diǎn),直線過橢圓C的右焦點(diǎn)F且交橢圓于P,Q兩點(diǎn).連結(jié)并延長(zhǎng)交直線于點(diǎn)M.

1)若直線的斜率為,求直線的方程;

2)求證:A,QM三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】河北省高考綜合改革從2018年秋季入學(xué)的高一年級(jí)學(xué)生開始實(shí)施,新高考將實(shí)行“3+1+2”模式,其中3表示語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科必選,1表示從物理、歷史兩科中選擇一科,2表示從化學(xué)、生物、政治、地理四科中選擇兩科.某校2018級(jí)入學(xué)的高一學(xué)生選科情況如下表:

選科組合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合計(jì)

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合計(jì)

230

90

105

65

60

50

70

30

95

25

40

40

900

1)完成下面的列聯(lián)表,并判斷是否在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為“選擇物理與學(xué)生的性別有關(guān)”?

2)以頻率估計(jì)概率,從該校2018級(jí)高一學(xué)生中隨機(jī)抽取3名同學(xué),設(shè)這三名同學(xué)中選擇物理的人數(shù)為,求的分布列和數(shù)學(xué)期望.

選擇物理

不選擇物理

合計(jì)

425

475

合計(jì)

900

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是國(guó)家統(tǒng)計(jì)局給出的2014年至2018年我國(guó)城鄉(xiāng)就業(yè)人員數(shù)量的統(tǒng)計(jì)圖表,結(jié)合這張圖表,以下說法錯(cuò)誤的是(

A.2017年就業(yè)人員數(shù)量是最多的

B.2017年至2018年就業(yè)人員數(shù)量呈遞減狀態(tài)

C.2016年至2017年就業(yè)人員數(shù)量與前兩年比較,增加速度減緩

D.2018年就業(yè)人員數(shù)量比2014年就業(yè)人員數(shù)量增長(zhǎng)超過400萬(wàn)人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,2448,,192,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候的近似值是3.141024,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對(duì)后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

同步練習(xí)冊(cè)答案