【題目】已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=3時(shí),A={x|2﹣a≤x≤2+a}={x|﹣1≤x≤5},B={x|x≤1或x≥4}.

則A∩B={x|﹣1≤x≤1或4≤x≤5}


(2)解:若2+a<2﹣a,即a<0時(shí),A=,滿足A∩B=,

若a≥0,若滿足A∩B=,

,即 ,解得0≤a<1

綜上實(shí)數(shù)a的取值范圍a<1


【解析】(1)當(dāng)a=3時(shí),根據(jù)集合的基本運(yùn)算即可求A∩B;(2)若A∩B=,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】利用集合的交集運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=
(1)求f(log2 )的值;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點(diǎn)M,N分別在PB,PC上,且MN∥BC.

(1)證明:平面AMN⊥平面PBA;
(2)若M為PB的中點(diǎn),求二面角M﹣AC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),則f(x)是(
A.奇函數(shù),且在(0,1)上是增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所設(shè)計(jì)了一款智能機(jī)器人,為了檢驗(yàn)設(shè)計(jì)方案中機(jī)器人動(dòng)作完成情況,現(xiàn)委托某工廠生產(chǎn)個(gè)機(jī)器人模型,并對(duì)生產(chǎn)的機(jī)器人進(jìn)行編號(hào): ,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的機(jī)器人樣本,試驗(yàn)小組對(duì)個(gè)機(jī)器人樣本的動(dòng)作個(gè)數(shù)進(jìn)行分組,頻率分布直方圖及頻率分布表中的部分?jǐn)?shù)據(jù)如圖所示,請(qǐng)據(jù)此回答如下問題:

分組

機(jī)器人數(shù)

頻率

0.08

10

10

6

(1)補(bǔ)全頻率分布表,畫出頻率分布直方圖;

(2)若隨機(jī)抽的第一個(gè)號(hào)碼為,這個(gè)機(jī)器人分別放在三個(gè)房間,從房間,從房間,從房間,求房間被抽中的人數(shù)是多少?

(3)從動(dòng)作個(gè)數(shù)不低于的機(jī)器人中隨機(jī)選取個(gè)機(jī)器人,該個(gè)機(jī)器人中動(dòng)作個(gè)數(shù)不低于的機(jī)器人記為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列不等關(guān)系正確的是( )
A.( <34<( 2
B.( 2<( <34
C.(2.5)0<( 2.5<22.5
D.( 2.5<(2.5)0<22.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx﹣1,若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x+y﹣1=0垂直.
(1)求a的值;
(2)函數(shù)g(x)=f(x)﹣m(x﹣1)(m∈R)恰有兩個(gè)零點(diǎn)x1 , x2(x1<x2),求函數(shù)g(x)的單調(diào)區(qū)間及實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案