14.設(shè)n∈N*,圓Cn:(x-$\frac{1}{n}$)2+(y-1)2=$\frac{{4}^{n+1}-1}{{4}^{n+1}+2}$的面積為Sn,則$\underset{lim}{n→∞}$Sn=π.

分析 根據(jù)圓的方程可得出圓的半徑,從而可以求出圓的面積${S}_{n}=\frac{π({4}^{n+1}-1)}{{4}^{n+1}+2}$,在求極限時(shí),分子分母同除以4n+1,然后求數(shù)列極限即可.

解答 解:根據(jù)圓的標(biāo)準(zhǔn)方程得圓的面積${S}_{n}=\frac{π({4}^{n+1}-1)}{{4}^{n+1}+2}$;
∴$\underset{lim}{n→∞}{S}_{n}=\underset{lim}{n→∞}\frac{π({4}^{n+1}-1)}{{4}^{n+1}+2}$=$\underset{lim}{n→∞}\frac{π(1-\frac{1}{{4}^{n+1}})}{1+\frac{2}{{4}^{n+1}}}$=$\frac{π(1-0)}{1+0}=π$.
故答案為:π.

點(diǎn)評(píng) 考查圓的標(biāo)準(zhǔn)方程,圓的面積公式,以及數(shù)列極限的概念及求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知三角形的頂點(diǎn)A(-5,0),B(3,-3),C(0,2),試求:
(1)BC邊所在直線的方程;
(2)AC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)z0滿足|2z0+15|=$\sqrt{3}$|$\overline{{z}_{0}}$+10|,
(1)求證:|z0|為定值;
(2)設(shè)x=$\frac{1+i}{2}$,zn=z0xn,若an=|zn-zn-1|,n∈N*,求$\underset{lim}{n→∞}$(a1+a2+…+an).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-3sin2x-cos2x+3.
(1)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{a}$=$\sqrt{3}$,$\frac{sin(2A+C)}{sinA}$=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,A(2,4),B(1,-3),C(-2,1),則邊BC上的高AD所在的直線的點(diǎn)斜式方程為y=$\frac{3}{4}$x+$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)={log_a}({a-{a^x}})({0<a<1})$的反函數(shù)為f-1(x)
(1)判斷f(x)的單調(diào)性并證明;
(2)解關(guān)于x的不等式f-1(x2-2)<f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)P(x,y)為橢圓$\frac{{x}^{2}}{9}$+y2=1上的任意一點(diǎn),則x+3y的最大值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左焦點(diǎn)為F(-1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求k的取值范圍;
(3)在y軸上,是否存在定點(diǎn)E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在單位正方體ABCD-A1B1C1D1中,M、N、P分別是CC1、BC,CD的中點(diǎn),O為底面ABCD的中心.
(1)求證:A1P⊥MN;
(2)求證:OM⊥平面A1BD;
(3)求證:平面MNP∥平面B1D1A.

查看答案和解析>>

同步練習(xí)冊(cè)答案