已知F1,F(xiàn)2是橢圓 =1的兩焦點,過點F2的直線交橢圓于A,B兩點.在△AF1B中,若有兩邊之和是10,則第三邊的長度為                   (  )

A.6            B.5             C.4           D.3

 

【答案】

A

【解析】

試題分析:因為根據(jù)已知條件可知,橢圓=1中16>9,說明焦點在x軸上,同時a=4,b=3,而過點F2的直線交橢圓于A,B兩點,則點A到F2F1的距離和為2a=8,點B到F2,F1的距離和為2a=8,結合橢圓的定義可知△AF1B的周長為4a=16.在結合三角形的周長公式可知,其中兩邊之和為10,則另一邊的長度為16-10=6故選A.

考點:本試題主要是考查了橢圓的定義與幾何性質的運用,通過過焦點的直線與橢圓相交,結合橢圓的定義得到△AF1B的周長為4a,那么利用其中兩邊的長度和,得到另一邊的長度值。

點評:解決該試題的核心就是能充分利用橢圓的定義,分析橢圓上任意一點到兩焦點的距離和為定值2a,那么得到結論。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個焦點,點P是橢圓上一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習冊答案