已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點(diǎn)為,求面積的最大值.
(1);(2).

試題分析:(1)根據(jù)拋物線的焦點(diǎn)是橢圓的短軸長,可以求出,再根據(jù)離心率,從而能夠求出;(2)設(shè)出點(diǎn)坐標(biāo),從而寫出的方程,根據(jù)橢圓的對(duì)稱性能夠表示出的面積,聯(lián)立直線與橢圓,求出代入到的面積,進(jìn)一步表示出面積,根據(jù)均值不等式能夠求出面積的最大值.
試題解析:(1)拋物線的焦點(diǎn)為,∴
又橢圓離心率,∴,
所以橢圓的方程為
(2)設(shè)點(diǎn),則,連軸于點(diǎn)
由對(duì)稱性知:
    得:
,
(當(dāng)且僅當(dāng)時(shí)取等號(hào))

面積的最大值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的四個(gè)頂點(diǎn)恰好是一邊長為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(II)若直線y =kx交橢圓C于A,B兩點(diǎn),在直線l:x+y-3=0上存在點(diǎn)P,使得 ΔPAB為等邊三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,上頂點(diǎn)為,過三點(diǎn)作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長是,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△為直角三角形,則△的面積等于__   __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示橢圓,則的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓與直線相交于兩點(diǎn).
(1)若橢圓的半焦距,直線圍成的矩形的面積為8,
求橢圓的方程;
(2)若為坐標(biāo)原點(diǎn)),求證:;
(3)在(2)的條件下,若橢圓的離心率滿足,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形中,分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè),

(Ⅰ)求直線的交點(diǎn)的軌跡的方程;
(Ⅱ)過圓上一點(diǎn)作圓的切線與軌跡交于兩點(diǎn),若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點(diǎn)分別為AB,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線APPB與直線ly=-2分別交于點(diǎn)M、N.

(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案