【題目】已知f(x)=x2+2xf′(1),則f′(0)等于( )
A.0
B.﹣2
C.﹣4
D.2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)不等式①x2﹣4x+3<0,②x2﹣6x+8<0,③2x2﹣9x+m<0.要使同時(shí)滿足①②的所有x的值滿足③,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電,屬于哪種推理( )
A.歸納推理
B.類比推理
C.合情推理
D.演繹推理
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c∈R,則復(fù)數(shù)(a+bi)(c+di)為實(shí)數(shù)的充要條件是( )
A.ad﹣bc=0
B.ac﹣bd=0
C.ac+bd=0
D.ad+bc=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x3﹣3x﹣1,若對(duì)于區(qū)間[﹣3,2]上的任意x1 , x2 , 都有|f(x1)﹣f(x2)|≤t,則實(shí)數(shù)t的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b>0且a≠1,b≠1,logab>1,某班的幾位學(xué)生根據(jù)以上條件,得出了以下4個(gè)結(jié)論:
①b>1 且 b>a; ②a<1 且 a<b;③b<1 且 b<a;④a<1 且b<1.
其中不可能成立的結(jié)論共有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合M={1,9,a},集合P={1,a,2},若PM,則實(shí)數(shù)a的取值個(gè)數(shù)為( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣5,5]上的偶函數(shù),且f(3)>f(1),則正確的是( )
A.f(0)<f(5)
B.f(﹣1)<f(3)
C.f(3)>f(2)
D.f(2)>f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①m⊥α,n∥α,則m⊥n;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,β∥γ,m⊥α,則m⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,則α∥β.
其中正確命題的序號(hào)是( )
A.①和③
B.②和③
C.③和④
D.①和④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com