已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.
【答案】分析:(1)利用二倍角的正弦函數(shù)與余弦函數(shù)以及兩角和的正弦函數(shù).化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,然后求解函數(shù)f(x)的最小正周期;
(2)在△ABC中,利用f(C)=2,求出C的值,通過(guò)sinB=cos(A-C)-cos(A+C)利用兩角和與差的三角函數(shù)化簡(jiǎn),推出tanA與C的正弦函數(shù)與余弦函數(shù)的關(guān)系式,求出結(jié)果即可.
解答:解:(1)函數(shù)=1+cos2x+sin2x=2sin(2x+)+1,
∴函數(shù)的最小正周期為:=π.
(2)∵f(C)=2,∴2sin(2C+)+1=2,
∴sin(2C+)=
∵0<C<π,
,
,C=;
∵2sinB=cos(A-C)-cos(A+C)=2sinAsinC,
∴sin(A+C)=sinAsinC,
即:sinAcosC+cosAsinC=sinAsinC,
即:tanA=
=
=
=
點(diǎn)評(píng):本題考查二倍角公式以及兩角和與差的三角函數(shù)的應(yīng)用,求解函數(shù)f(x)的最小正周期以及三角函數(shù)值求解角的大小的方法;考查轉(zhuǎn)化思想以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
編寫(xiě)一程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù),

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案