(本小題滿分12分)
已知等差數(shù)列{}的前項(xiàng)和為,且。數(shù)列為等比數(shù)列,且首項(xiàng),.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和為;
(1) . (2).
解析試題分析:(1)設(shè)首項(xiàng)為a1,公差為d,由題意,得,得到首項(xiàng)和公差,進(jìn)而得到等比數(shù)列的通項(xiàng)公式。
(2)分析可知,那么利用等比數(shù)列的求和得到結(jié)論。
解:(1)設(shè)首項(xiàng)為a1,公差為d,由題意,得
……3分
又 數(shù)列為等比數(shù)列,設(shè)公比為,
∵ ,,
∴.∴ . …6分
(2). 8分
所以 . …12分
考點(diǎn):本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求解和求和公式的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能熟練的運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式來求解其基本量,進(jìn)而得到數(shù)列的求和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求:的值;
(2)類比等差數(shù)列的前項(xiàng)和公式的推導(dǎo)方法,求:
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,且
(1)求通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在等差數(shù)列中,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列、滿足,,,.
(1)證明:,();
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為,且;數(shù)列為等差數(shù)列,且。
求證:數(shù)列是等比數(shù)列,并求通項(xiàng)公式;
若,為數(shù)列的前項(xiàng)和,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式
(2)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列中,,
且
(1)求證:;(2)求數(shù)列的通項(xiàng)公式;(3)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com